Study of the Berezinskii-Kosterlitz-Thouless transition: an unsupervised machine learning approach

被引:2
|
作者
Haldar, Sumit [1 ]
Rahaman, S. K. Saniur [1 ]
Kumar, Manoranjan [1 ]
机构
[1] S N Bose Natl Ctr Basic Sci, J D Block,Sect 3, Kolkata 700106, India
关键词
estimation of phase transitions; principal component analysis; machine learning; Berezinskii-Kosterlitz-Thouless transition; XY and XXZ models; antiferromagnetic triangular lattice; ferromagnetic square lattice; HEISENBERG-ANTIFERROMAGNET; PHASE-TRANSITIONS; TRIANGULAR LATTICE; FERROMAGNETISM;
D O I
10.1088/1361-648X/ad5d35
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The Berezinskii-Kosterlitz-Thouless (BKT) transition in magnetic systems is an intriguing phenomenon, and estimating the BKT transition temperature is a long-standing problem. In this work, we explore anisotropic classical Heisenberg XY and XXZ models with ferromagnetic exchange on a square lattice and antiferromagnetic exchange on a triangular lattice using an unsupervised machine learning approach called principal component analysis (PCA). The earlier PCA studies of the BKT transition temperature ( TBKT ) using the vorticities as input fail to give any conclusive results, whereas, in this work, we show that the proper analysis of the first principal component-temperature curve can estimate TBKT which is consistent with the existing literature. This analysis works well for the anisotropic classical Heisenberg with a ferromagnetic exchange on a square lattice and for frustrated antiferromagnetic exchange on a triangular lattice. The classical anisotropic Heisenberg antiferromagnetic model on the triangular lattice has two close transitions: the TBKT and Ising-like phase transition for chirality at Tc , and it is difficult to separate these transition points. It is also noted that using the PCA method and manipulation of their first principal component not only makes the separation of transition points possible but also determines transition temperature.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A machine learning approach to the Berezinskii-Kosterlitz-Thouless transition in classical and quantum models
    Richter-Laskowska, M.
    Khan, H.
    Trivedi, N.
    Maska, M. M.
    CONDENSED MATTER PHYSICS, 2018, 21 (03)
  • [2] Uniaxial modulation and the Berezinskii-Kosterlitz-Thouless transition
    Giuliano, Domenico
    Nguyen, Phong H.
    Nava, Andrea
    Boninsegni, Massimo
    PHYSICAL REVIEW B, 2023, 107 (19)
  • [3] Machine-Learning Detection of the Berezinskii-Kosterlitz-Thouless Transitions
    Mochizuki, Masahito
    Miyajima, Yusuke
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2025, 94 (03)
  • [4] Disordered Berezinskii-Kosterlitz-Thouless transition and superinsulation
    Sankar, S.
    Vinokur, V. M.
    Tripathi, V.
    PHYSICAL REVIEW B, 2018, 97 (02)
  • [5] Berezinskii-Kosterlitz-Thouless Transition in Ultrathin Niobium Films
    Altanany, S. M.
    Zajcewa, I.
    Minikayev, R.
    Cieplak, M. Z.
    ACTA PHYSICA POLONICA A, 2023, 143 (02) : 129 - 133
  • [6] Broadening of the Berezinskii-Kosterlitz-Thouless transition by correlated disorder
    Maccari, I.
    Benfatto, L.
    Castellani, C.
    PHYSICAL REVIEW B, 2017, 96 (06)
  • [7] Berezinskii-Kosterlitz-Thouless transition with a constraint lattice action
    Bietenholz, Wolfgang
    Gerber, Urs
    Rejon-Barrera, Fernando G.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [8] Berezinskii-Kosterlitz-Thouless transition in rhenium nitride films
    Takiguchi, Kosuke
    Krockenberger, Yoshiharu
    Taniyasu, Yoshitaka
    Yamamoto, Hideki
    PHYSICAL REVIEW B, 2024, 110 (02)
  • [9] Flux noise near the Berezinskii-Kosterlitz-Thouless transition
    Wagenblast, KH
    Fazio, R
    JETP LETTERS, 1998, 68 (04) : 312 - 316
  • [10] Effect of amplitude fluctuations on the Berezinskii-Kosterlitz-Thouless transition
    Erez, Amir
    Meir, Yigal
    PHYSICAL REVIEW B, 2013, 88 (18):