Reconfiguring Shortest Paths in Graphs

被引:0
|
作者
Gajjar, Kshitij [1 ]
Jha, Agastya Vibhuti [2 ]
Kumar, Manish [3 ]
Lahiri, Abhiruk [4 ]
机构
[1] Indian Inst Technol Jodhpur, Jodhpur, India
[2] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
[3] Negev & Bar ilan Univ, Bengur Univ, Beer Sheva, Israel
[4] Charles Univ Prague, Prague, Czech Republic
基金
以色列科学基金会;
关键词
Reconfiguration; Shortest path; PSPACE-complete; Circle graph; Boolean hypercube; Bridged graph; Line graph; Hardness of approximation; COMPLEXITY; CONNECTION; HYPERCUBES; NETWORKS;
D O I
10.1007/s00453-024-01263-y
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Reconfiguring two shortest paths in a graph means modifying one shortest path to the other by changing one vertex at a time so that all the intermediate paths are also shortest paths. This problem has several natural applications, namely: (a) repaving road networks, (b) rerouting data packets in a synchronous multiprocessing setting, (c) the shipping container stowage problem, and (d) the train marshalling problem. When modelled as graph problems, (a) is the most general case while (b), (c), (d) are restrictions to different graph classes. We show that (a) does not admit polynomial-time algorithms (assuming P not equal NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{\texttt {P}}\,}}\ne {{\,\mathrm{\texttt {NP}}\,}}$$\end{document}), even for relaxed variants of the problem (assuming P not equal PSPACE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{\texttt {P}}\,}}\ne {{\,\mathrm{\texttt {PSPACE}}\,}}$$\end{document}). For (b), (c), (d), we present polynomial-time algorithms to solve the respective problems. We also generalize the problem to when at most k (for a fixed integer k >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document}) contiguous vertices on a shortest path can be changed at a time.
引用
收藏
页码:3309 / 3338
页数:30
相关论文
共 50 条
  • [11] SHORTEST PATHS IN REACHABILITY GRAPHS
    DESEL, J
    ESPARZA, J
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1995, 51 (02) : 314 - 323
  • [12] Shortest Paths in Euclidean Graphs
    Sedgewick, Robert
    Vitter, Jeffrey Scott
    ALGORITHMICA, 1986, 1 (1-4) : 31 - 48
  • [13] Parametric Shortest Paths in Planar Graphs
    Gajjar, Kshitij
    Radhakrishnan, Jaikumar
    2019 IEEE 60TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2019), 2019, : 876 - 895
  • [14] Drawing Shortest Paths in Geodetic Graphs
    Cornelsen S.
    Pfister M.
    Förster H.
    Gronemann M.
    Hoffmann M.
    Kobourov S.
    Schneck T.
    Journal of Graph Algorithms and Applications, 2022, 26 (03) : 353 - 361
  • [15] Shortest paths in random weighted graphs
    Walley, SK
    Tan, HH
    COMPUTING AND COMBINATORICS, 1995, 959 : 213 - 222
  • [16] Shortest noncrossing paths in plane graphs
    Takahashi, JY
    Suzuki, H
    Nishizeki, T
    ALGORITHMICA, 1996, 16 (03) : 339 - 357
  • [17] On Shortest Disjoint Paths in Planar Graphs
    Kobayashi, Yusuke
    Sommer, Christian
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2009, 5878 : 293 - +
  • [18] Fuzzy shortest paths in fuzzy graphs
    Baniamerian, Amir
    Menhaj, Mohammad Bagher
    COMPUTATIONAL INTELLIGENCE, THEORY AND APPLICATION, 2006, : 757 - 764
  • [19] SHORTEST PATHS ANONYMIZATION ON WEIGHTED GRAPHS
    Wang, Shyue-Liang
    Tsai, Yu-Chuan
    Kao, Hung-Yu
    Ting, I-Hsien
    Hong, Tzung-Pei
    INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2013, 23 (01) : 65 - 79
  • [20] Rerouting shortest paths in planar graphs
    Bonsma, Paul
    DISCRETE APPLIED MATHEMATICS, 2017, 231 : 95 - 112