Reconfiguring Shortest Paths in Graphs

被引:0
|
作者
Gajjar, Kshitij [1 ]
Jha, Agastya Vibhuti [2 ]
Kumar, Manish [3 ]
Lahiri, Abhiruk [4 ]
机构
[1] Indian Inst Technol Jodhpur, Jodhpur, India
[2] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
[3] Negev & Bar ilan Univ, Bengur Univ, Beer Sheva, Israel
[4] Charles Univ Prague, Prague, Czech Republic
基金
以色列科学基金会;
关键词
Reconfiguration; Shortest path; PSPACE-complete; Circle graph; Boolean hypercube; Bridged graph; Line graph; Hardness of approximation; COMPLEXITY; CONNECTION; HYPERCUBES; NETWORKS;
D O I
10.1007/s00453-024-01263-y
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Reconfiguring two shortest paths in a graph means modifying one shortest path to the other by changing one vertex at a time so that all the intermediate paths are also shortest paths. This problem has several natural applications, namely: (a) repaving road networks, (b) rerouting data packets in a synchronous multiprocessing setting, (c) the shipping container stowage problem, and (d) the train marshalling problem. When modelled as graph problems, (a) is the most general case while (b), (c), (d) are restrictions to different graph classes. We show that (a) does not admit polynomial-time algorithms (assuming P not equal NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{\texttt {P}}\,}}\ne {{\,\mathrm{\texttt {NP}}\,}}$$\end{document}), even for relaxed variants of the problem (assuming P not equal PSPACE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{\texttt {P}}\,}}\ne {{\,\mathrm{\texttt {PSPACE}}\,}}$$\end{document}). For (b), (c), (d), we present polynomial-time algorithms to solve the respective problems. We also generalize the problem to when at most k (for a fixed integer k >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document}) contiguous vertices on a shortest path can be changed at a time.
引用
收藏
页码:3309 / 3338
页数:30
相关论文
共 50 条
  • [31] Spanning trees and shortest paths in Monge graphs
    Dudas, T.
    Rudolf, R.
    Computing (Vienna/New York), 1998, 60 (02): : 109 - 119
  • [32] DYNAMIC ALGORITHMS FOR SHORTEST PATHS IN PLANAR GRAPHS
    FEUERSTEIN, E
    MARCHETTISPACCAMELA, A
    THEORETICAL COMPUTER SCIENCE, 1993, 116 (02) : 359 - 371
  • [33] SHORTEST EDGE-DISJOINT PATHS IN GRAPHS
    SCHWILL, A
    LECTURE NOTES IN COMPUTER SCIENCE, 1989, 349 : 505 - 516
  • [34] DYNAMIC ALGORITHMS FOR SHORTEST PATHS IN PLANAR GRAPHS
    FEUERSTEIN, E
    MARCHETTISPACCAMELA, A
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 570 : 187 - 197
  • [35] Spanning trees and shortest paths in monge graphs
    T. Dudás
    R. Rudolf
    Computing, 1998, 60 : 109 - 119
  • [36] COMPUTING SHORTEST PATHS AND DISTANCES IN PLANAR GRAPHS
    DJIDJEV, HN
    PANTZIOU, GE
    ZAROLIAGIS, CD
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 510 : 327 - 338
  • [37] Anonymizing Shortest Paths on Social Network Graphs
    Wang, Shyue-Liang
    Tsai, Zheng-Ze
    Hong, Tzung-Pei
    Ting, I-Hsien
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2011, PT I, 2011, 6591 : 129 - 136
  • [38] Learning Shortest Paths on Large Dynamic Graphs
    Yin, Jiaming
    Rao, Weixiong
    Zhang, Chenxi
    2021 22ND IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2021), 2021, : 201 - 208
  • [39] On Mining Dynamic Graphs for k Shortest Paths
    D'Ascenzo, Andrea
    D'Emidio, Mattia
    SOCIAL NETWORKS ANALYSIS AND MINING, ASONAM 2024, PT I, 2025, 15211 : 320 - 336
  • [40] Shortest paths in intersection graphs of unit disks
    Cabello, Sergio
    Jejcic, Miha
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2015, 48 (04): : 360 - 367