Reconfiguring Shortest Paths in Graphs

被引:0
|
作者
Gajjar, Kshitij [1 ]
Jha, Agastya Vibhuti [2 ]
Kumar, Manish [3 ]
Lahiri, Abhiruk [4 ]
机构
[1] Indian Inst Technol Jodhpur, Jodhpur, India
[2] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
[3] Negev & Bar ilan Univ, Bengur Univ, Beer Sheva, Israel
[4] Charles Univ Prague, Prague, Czech Republic
基金
以色列科学基金会;
关键词
Reconfiguration; Shortest path; PSPACE-complete; Circle graph; Boolean hypercube; Bridged graph; Line graph; Hardness of approximation; COMPLEXITY; CONNECTION; HYPERCUBES; NETWORKS;
D O I
10.1007/s00453-024-01263-y
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Reconfiguring two shortest paths in a graph means modifying one shortest path to the other by changing one vertex at a time so that all the intermediate paths are also shortest paths. This problem has several natural applications, namely: (a) repaving road networks, (b) rerouting data packets in a synchronous multiprocessing setting, (c) the shipping container stowage problem, and (d) the train marshalling problem. When modelled as graph problems, (a) is the most general case while (b), (c), (d) are restrictions to different graph classes. We show that (a) does not admit polynomial-time algorithms (assuming P not equal NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{\texttt {P}}\,}}\ne {{\,\mathrm{\texttt {NP}}\,}}$$\end{document}), even for relaxed variants of the problem (assuming P not equal PSPACE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{\texttt {P}}\,}}\ne {{\,\mathrm{\texttt {PSPACE}}\,}}$$\end{document}). For (b), (c), (d), we present polynomial-time algorithms to solve the respective problems. We also generalize the problem to when at most k (for a fixed integer k >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document}) contiguous vertices on a shortest path can be changed at a time.
引用
收藏
页码:3309 / 3338
页数:30
相关论文
共 50 条
  • [41] RECURSIVE GRAPHS, RECURSIVE LABELINGS AND SHORTEST PATHS
    PROSKUROWSKI, A
    SIAM JOURNAL ON COMPUTING, 1981, 10 (02) : 391 - 397
  • [42] Shortest paths in distance-regular graphs
    Bendito, E
    Carmona, A
    Encinas, AM
    EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (02) : 153 - 166
  • [43] Spanning trees and shortest paths in Monge graphs
    Dudas, T
    Rudolf, R
    COMPUTING, 1998, 60 (02) : 109 - 119
  • [44] Replacement paths and k simple shortest paths in unweighted directed graphs
    Roditty, L
    Zwick, U
    AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2005, 3580 : 249 - 260
  • [45] Replacement Paths and k Simple Shortest Paths in Unweighted Directed Graphs
    Roditty, Liam
    Zwick, Uri
    ACM TRANSACTIONS ON ALGORITHMS, 2012, 8 (04)
  • [46] Texture analysis and classification using shortest paths in graphs
    de Mesquita Sa, Jarbas Joaci Junior
    Backes, Andre Ricardo
    Cortez, Paulo Cesar
    PATTERN RECOGNITION LETTERS, 2013, 34 (11) : 1314 - 1319
  • [47] Multiple-source shortest paths in planar graphs
    Klein, Philip N.
    PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2005, : 146 - 155
  • [48] SHORTEST-WEIGHT PATHS IN RANDOM REGULAR GRAPHS
    Amini, Hamed
    Peres, Yuval
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (02) : 656 - 672
  • [49] Maximum Flows and Parametric Shortest Paths in Planar Graphs
    Erickson, Jeff
    PROCEEDINGS OF THE TWENTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2010, 135 : 794 - 804
  • [50] Color Texture Classification Using Shortest Paths in Graphs
    de Mesquita Sa Junior, Jarbas Joaci
    Cortez, Paulo Cesar
    Backes, Andre Ricardo
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (09) : 3751 - 3761