Shortest noncrossing paths in plane graphs

被引:13
|
作者
Takahashi, JY [1 ]
Suzuki, H [1 ]
Nishizeki, T [1 ]
机构
[1] TOHOKU UNIV, GRAD SCH INFORMAT SCI, SENDAI, MIYAGI 98077, JAPAN
关键词
noncrossing paths; shortest path; plane graphs; single-layer routing; VLSI;
D O I
10.1007/BF01955681
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Let G be an undirected plane graph with nonnegative edge length, and let k terminal pairs Lie on two specified face boundaries. This paper presents an algorithm for finding k ''noncrossing paths'' in G, each connecting a terminal pair, and whose total length is minimum. Noncrossing paths may share common vertices or edges but do not cross each other in the plane. The algorithm runs in time O(n log n) where n is the number of vertices in G and k is an arbitrary integer.
引用
收藏
页码:339 / 357
页数:19
相关论文
共 50 条
  • [1] MINIMUM CUTS AND SHORTEST CYCLES IN DIRECTED PLANAR. GRAPHS VIA NONCROSSING SHORTEST PATHS
    Liang, Hung-Chun
    Lu, Hsueh-I
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (01) : 454 - 476
  • [2] ALGORITHMS FOR FINDING NONCROSSING PATHS WITH MINIMUM TOTAL LENGTH IN PLANE GRAPHS
    TAKAHASHI, J
    SUZUKI, H
    NISHIZEKI, T
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 1995, 78 (04): : 1 - 15
  • [3] Algorithms for finding noncrossing paths with minimum total length in plane graphs
    Takahashi, Jun-ya
    Suzuki, Hitoshi
    Nishizeki, Takao
    Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English translation of Denshi Tsushin Gakkai Ronbunshi), 1995, 78 (04): : 1 - 15
  • [4] Noncrossing Hamiltonian paths in geometric graphs
    Cerny, Jakub
    Dvorak, Zdenek
    Jelinek, Vit
    Kara, Jan
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (09) : 1096 - 1105
  • [5] Noncrossing Hamiltonian paths in geometric graphs
    Cerny, J
    Dvorák, Z
    Jelínek, V
    Kára, J
    GRAPH DRAWING, 2004, 2912 : 86 - 97
  • [6] Shortest paths in Sierpinski graphs
    Xue, Bing
    Zuo, Liancui
    Wang, Guanghui
    Li, Guojun
    DISCRETE APPLIED MATHEMATICS, 2014, 162 : 314 - 321
  • [7] Shortest Paths on Evolving Graphs
    Zou, Yiming
    Zeng, Gang
    Wang, Yuyi
    Liu, Xingwu
    Sun, Xiaoming
    Zhang, Jialin
    Li, Qiang
    COMPUTATIONAL SOCIAL NETWORKS, CSONET 2016, 2016, 9795 : 1 - 13
  • [8] Shortest paths of butterfly graphs
    Hwang, SC
    Chen, GH
    INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOLS I-V, PROCEEDINGS, 1999, : 2195 - 2199
  • [9] Approximating Shortest Paths in Graphs
    Sen, Sandeep
    WALCOM: ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2009, 5431 : 32 - 43
  • [10] DISJOINT SHORTEST PATHS IN GRAPHS
    ENOMOTO, H
    SAITO, A
    COMBINATORICA, 1984, 4 (04) : 275 - 279