Shortest noncrossing paths in plane graphs

被引:13
|
作者
Takahashi, JY [1 ]
Suzuki, H [1 ]
Nishizeki, T [1 ]
机构
[1] TOHOKU UNIV, GRAD SCH INFORMAT SCI, SENDAI, MIYAGI 98077, JAPAN
关键词
noncrossing paths; shortest path; plane graphs; single-layer routing; VLSI;
D O I
10.1007/BF01955681
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Let G be an undirected plane graph with nonnegative edge length, and let k terminal pairs Lie on two specified face boundaries. This paper presents an algorithm for finding k ''noncrossing paths'' in G, each connecting a terminal pair, and whose total length is minimum. Noncrossing paths may share common vertices or edges but do not cross each other in the plane. The algorithm runs in time O(n log n) where n is the number of vertices in G and k is an arbitrary integer.
引用
收藏
页码:339 / 357
页数:19
相关论文
共 50 条
  • [41] Shortest paths in arbitrary plane domains
    Hoehn, L. C.
    Oversteegen, L. G.
    Tymchatyn, E. D.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2022, 74 (02): : 349 - 367
  • [42] Computing homotopic shortest paths in the plane
    Bespamyatnikh, S
    PROCEEDINGS OF THE FOURTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2003, : 609 - 617
  • [43] Algorithms for finding noncrossing Steiner forests in plane graphs
    Kusakari, Y
    Masubuchi, D
    Nishizeki, T
    ALGORITHMS AND COMPUTATIONS, 2000, 1741 : 337 - 346
  • [44] Noncrossing trees and noncrossing graphs
    Chen, William Y. C.
    Yan, Sherry H. F.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2006, 13 (01):
  • [45] On reverse shortest paths in geometric proximity graphs
    Agarwal, Pankaj K.
    Katz, Matthew J.
    Sharir, Micha
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2024, 117
  • [46] DYNAMIC ALGORITHMS FOR SHORTEST PATHS IN PLANAR GRAPHS
    FEUERSTEIN, E
    MARCHETTISPACCAMELA, A
    THEORETICAL COMPUTER SCIENCE, 1993, 116 (02) : 359 - 371
  • [47] Shortest Two Disjoint Paths in Conservative Graphs
    Schlotter, Ildiko
    41ST INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, STACS 2024, 2024, 289
  • [48] Spanning trees and shortest paths in Monge graphs
    Dudas, T.
    Rudolf, R.
    Computing (Vienna/New York), 1998, 60 (02): : 109 - 119
  • [49] SHORTEST EDGE-DISJOINT PATHS IN GRAPHS
    SCHWILL, A
    LECTURE NOTES IN COMPUTER SCIENCE, 1989, 349 : 505 - 516
  • [50] DYNAMIC ALGORITHMS FOR SHORTEST PATHS IN PLANAR GRAPHS
    FEUERSTEIN, E
    MARCHETTISPACCAMELA, A
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 570 : 187 - 197