Shortest noncrossing paths in plane graphs

被引:13
|
作者
Takahashi, JY [1 ]
Suzuki, H [1 ]
Nishizeki, T [1 ]
机构
[1] TOHOKU UNIV, GRAD SCH INFORMAT SCI, SENDAI, MIYAGI 98077, JAPAN
关键词
noncrossing paths; shortest path; plane graphs; single-layer routing; VLSI;
D O I
10.1007/BF01955681
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Let G be an undirected plane graph with nonnegative edge length, and let k terminal pairs Lie on two specified face boundaries. This paper presents an algorithm for finding k ''noncrossing paths'' in G, each connecting a terminal pair, and whose total length is minimum. Noncrossing paths may share common vertices or edges but do not cross each other in the plane. The algorithm runs in time O(n log n) where n is the number of vertices in G and k is an arbitrary integer.
引用
收藏
页码:339 / 357
页数:19
相关论文
共 50 条