Predicting Parkinson's Disease Progression: Analyzing Prodromal Stages Through Machine Learning

被引:0
|
作者
Martinez-Eguiluz, Maitane [1 ]
Muguerz, Javier [1 ]
Arbelaitz, Olatz [1 ]
Gurrutxaga, Ibai [1 ]
Carlos Gomez-Esteban, Juan [2 ,3 ,4 ]
Murueta-Goyena, Ane [2 ,3 ]
Gabilondo, Inigo [3 ,4 ,5 ]
机构
[1] Univ Basque Country, UPV EHU, Dept Comp Architecture & Technol, Donostia San Sebastian, Spain
[2] Univ Basque Country, UPV EHU, Dept Neurosci, Leioa, Spain
[3] Biobizkaia Hlth Res Inst, Neurodegenerat Dis Grp, Baracaldo, Spain
[4] Cruces Univ Hosp, Dept Neurol, Baracaldo, Spain
[5] Basque Fdn Sci, Ikerbasque, Bilbao, Spain
关键词
Prodromal Parkinson's disease; Machine Learning; MRI data;
D O I
10.1007/978-3-031-62799-6_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study explores prodromal Parkinson's Disease (PD) by leveraging data from the Parkinson's Progression Markers Initiative (PPMI). The main goal was to discriminate between prodromals that phenoconverted to PD in 7 years to those that did not. Through feature selection, the system identified key first visit predictors of PD phenoconversion, encompassing demographic, clinical, and structural magnetic resonance imaging (MRI) data. Employing seven machine learning algorithms in standard and balanced forms, we find Support Vector Machine (balanced) as most effective for demographic and clinical data, and Logistic Regression (balanced) when adding thicknesses and volumes of MRI data. The metrics were improve in the second case (AUC ROC of 0.84). Significant predictors include olfactory dysfunction, motor symptoms, psychomotor speed, and third ventricle dilation.
引用
收藏
页码:61 / 70
页数:10
相关论文
共 50 条
  • [1] Predicting Parkinson's Disease Progression: Evaluation of Ensemble Methods in Machine Learning
    Nilashi, Mehrbakhsh
    Abumalloh, Rabab Ali
    Minaei-Bidgoli, Behrouz
    Samad, Sarminah
    Yousoof Ismail, Muhammed
    Alhargan, Ashwaq
    Abdu Zogaan, Waleed
    JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022
  • [2] A Machine Learning Approach for Early Identification of Prodromal Parkinson's Disease
    Vaish, Anisha
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2024, 16 (06)
  • [4] Heterogeneity in progression of prodromal features in Parkinson's disease
    Schrag, A.
    Zhelev, S. S.
    Hotham, S.
    Merritt, R. D.
    Khan, K.
    Graham, L.
    PARKINSONISM & RELATED DISORDERS, 2019, 64 : 275 - 279
  • [5] Detection and Classification of Early Stages of Parkinson's Disease Through Wearable Sensors and Machine Learning
    Shcherbak, Aleksei
    Kovalenko, Ekaterina
    Somov, Andrey
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [6] Classification of Parkinson's disease and its stages using machine learning
    Templeton, John Michael
    Poellabauer, Christian
    Schneider, Sandra
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [7] Classification of Parkinson’s disease and its stages using machine learning
    John Michael Templeton
    Christian Poellabauer
    Sandra Schneider
    Scientific Reports, 12
  • [8] Comparison of Machine Learning Techniques for the Identification of the Stages of Parkinson's Disease
    Deena, P. F.
    Raimond, Kumudha
    COMPUTATIONAL INTELLIGENCE, CYBER SECURITY AND COMPUTATIONAL MODELS, ICC3 2015, 2016, 412 : 247 - 259
  • [9] Multi-modality machine learning predicting Parkinson’s disease
    Mary B. Makarious
    Hampton L. Leonard
    Dan Vitale
    Hirotaka Iwaki
    Lana Sargent
    Anant Dadu
    Ivo Violich
    Elizabeth Hutchins
    David Saffo
    Sara Bandres-Ciga
    Jonggeol Jeff Kim
    Yeajin Song
    Melina Maleknia
    Matt Bookman
    Willy Nojopranoto
    Roy H. Campbell
    Sayed Hadi Hashemi
    Juan A. Botia
    John F. Carter
    David W. Craig
    Kendall Van Keuren-Jensen
    Huw R. Morris
    John A. Hardy
    Cornelis Blauwendraat
    Andrew B. Singleton
    Faraz Faghri
    Mike A. Nalls
    npj Parkinson's Disease, 8
  • [10] Multi-modality machine learning predicting Parkinson's disease
    Makarious, Mary B.
    Leonard, Hampton L.
    Vitale, Dan
    Iwaki, Hirotaka
    Sargent, Lana
    Dadu, Anant
    Violich, Ivo
    Hutchins, Elizabeth
    Saffo, David
    Bandres-Ciga, Sara
    Kim, Jonggeol Jeff
    Song, Yeajin
    Maleknia, Melina
    Bookman, Matt
    Nojopranoto, Willy
    Campbell, Roy H.
    Hashemi, Sayed Hadi
    Botia, Juan A.
    Carter, John F.
    Craig, David W.
    Van Keuren-Jensen, Kendall
    Morris, Huw R.
    Hardy, John A.
    Blauwendraat, Cornelis
    Singleton, Andrew B.
    Faghri, Faraz
    Nalls, Mike A.
    NPJ PARKINSONS DISEASE, 2022, 8 (01)