Predicting Parkinson's Disease Progression: Analyzing Prodromal Stages Through Machine Learning

被引:0
|
作者
Martinez-Eguiluz, Maitane [1 ]
Muguerz, Javier [1 ]
Arbelaitz, Olatz [1 ]
Gurrutxaga, Ibai [1 ]
Carlos Gomez-Esteban, Juan [2 ,3 ,4 ]
Murueta-Goyena, Ane [2 ,3 ]
Gabilondo, Inigo [3 ,4 ,5 ]
机构
[1] Univ Basque Country, UPV EHU, Dept Comp Architecture & Technol, Donostia San Sebastian, Spain
[2] Univ Basque Country, UPV EHU, Dept Neurosci, Leioa, Spain
[3] Biobizkaia Hlth Res Inst, Neurodegenerat Dis Grp, Baracaldo, Spain
[4] Cruces Univ Hosp, Dept Neurol, Baracaldo, Spain
[5] Basque Fdn Sci, Ikerbasque, Bilbao, Spain
关键词
Prodromal Parkinson's disease; Machine Learning; MRI data;
D O I
10.1007/978-3-031-62799-6_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study explores prodromal Parkinson's Disease (PD) by leveraging data from the Parkinson's Progression Markers Initiative (PPMI). The main goal was to discriminate between prodromals that phenoconverted to PD in 7 years to those that did not. Through feature selection, the system identified key first visit predictors of PD phenoconversion, encompassing demographic, clinical, and structural magnetic resonance imaging (MRI) data. Employing seven machine learning algorithms in standard and balanced forms, we find Support Vector Machine (balanced) as most effective for demographic and clinical data, and Logistic Regression (balanced) when adding thicknesses and volumes of MRI data. The metrics were improve in the second case (AUC ROC of 0.84). Significant predictors include olfactory dysfunction, motor symptoms, psychomotor speed, and third ventricle dilation.
引用
收藏
页码:61 / 70
页数:10
相关论文
共 50 条
  • [41] Predicting Metamorphic Changes In Parkinson's Disease Patients Using Machine Learning Algorithms
    Mary, G. Prema Arokia
    Suganthi, N.
    Hema, M. S.
    Dharshini, M. Hari
    Vaishaali, K.
    Sri, M. Monika
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (11): : 147 - 152
  • [42] Predicting patients with Parkinson's disease using Machine Learning and ensemble voting technique
    Shawki Saleh
    Bouchaib Cherradi
    Oussama El Gannour
    Soufiane Hamida
    Omar Bouattane
    Multimedia Tools and Applications, 2024, 83 : 33207 - 33234
  • [43] Predicting patients with Parkinson's disease using Machine Learning and ensemble voting technique
    Saleh, Shawki
    Cherradi, Bouchaib
    El Gannour, Oussama
    Hamida, Soufiane
    Bouattane, Omar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (11) : 33207 - 33234
  • [44] Detecting Parkinson's Disease through Gait Measures Using Machine Learning
    Li, Alex
    Li, Chenyu
    DIAGNOSTICS, 2022, 12 (10)
  • [45] Unraveling sex differences in Parkinson's disease through explainable machine learning
    Angelini, Gianfrancesco
    Malvaso, Antonio
    Schirripa, Aurelia
    Campione, Francesca
    D'Addario, Sebastian Luca
    Toschi, Nicola
    Caligiore, Daniele
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2024, 462
  • [46] Prodromal Parkinson's disease and subsequent risk of Parkinson's disease and mortality
    Chen, Xiao
    Li, Yaqi
    Shen, Yun
    Schwarzschild, Michael A.
    Gao, Xiang
    NPJ PARKINSONS DISEASE, 2025, 11 (01)
  • [47] Machine Learning Approaches in Parkinson's Disease
    Landolfi, Annamaria
    Ricciardi, Carlo
    Donisi, Leandro
    Cesarelli, Giuseppe
    Troisi, Jacopo
    Vitale, Carmine
    Barone, Paolo
    Amboni, Marianna
    CURRENT MEDICINAL CHEMISTRY, 2021, 28 (32) : 6548 - 6568
  • [48] Contrastive machine learning reveals Parkinson's disease specific features associated with disease severity and progression
    Zheng, Liping
    Zhou, Cheng
    Mao, Chengjie
    Xie, Chao
    You, Jia
    Cheng, Wei
    Liu, Chunfeng
    Huang, Peiyu
    Guan, Xiaoujun
    Guo, Tao
    Wu, Jingjing
    Luo, Yajun
    Xu, Xiaojun
    Zhang, Baorong
    Zhang, Minming
    Wang, Linbo
    Feng, Jianfeng
    COMMUNICATIONS BIOLOGY, 2024, 7 (01)
  • [49] Machine Learning approaches to classifying and predicting disease progression in Adrenomyeloneuropathy
    Turk, B.
    Fine, A.
    Fan, Y.
    Wei, J.
    Keller, J.
    Raymond, G.
    Unberath, M.
    Fatemi, A.
    ANNALS OF NEUROLOGY, 2022, 92 : S33 - S34
  • [50] Factors predicting more rapid progression of Parkinson's disease
    Horská, K
    Rektorová, I
    Rektor, I
    CESKA A SLOVENSKA NEUROLOGIE A NEUROCHIRURGIE, 2001, 64 (03) : 157 - 161