Predicting Parkinson's Disease Progression: Analyzing Prodromal Stages Through Machine Learning

被引:0
|
作者
Martinez-Eguiluz, Maitane [1 ]
Muguerz, Javier [1 ]
Arbelaitz, Olatz [1 ]
Gurrutxaga, Ibai [1 ]
Carlos Gomez-Esteban, Juan [2 ,3 ,4 ]
Murueta-Goyena, Ane [2 ,3 ]
Gabilondo, Inigo [3 ,4 ,5 ]
机构
[1] Univ Basque Country, UPV EHU, Dept Comp Architecture & Technol, Donostia San Sebastian, Spain
[2] Univ Basque Country, UPV EHU, Dept Neurosci, Leioa, Spain
[3] Biobizkaia Hlth Res Inst, Neurodegenerat Dis Grp, Baracaldo, Spain
[4] Cruces Univ Hosp, Dept Neurol, Baracaldo, Spain
[5] Basque Fdn Sci, Ikerbasque, Bilbao, Spain
关键词
Prodromal Parkinson's disease; Machine Learning; MRI data;
D O I
10.1007/978-3-031-62799-6_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study explores prodromal Parkinson's Disease (PD) by leveraging data from the Parkinson's Progression Markers Initiative (PPMI). The main goal was to discriminate between prodromals that phenoconverted to PD in 7 years to those that did not. Through feature selection, the system identified key first visit predictors of PD phenoconversion, encompassing demographic, clinical, and structural magnetic resonance imaging (MRI) data. Employing seven machine learning algorithms in standard and balanced forms, we find Support Vector Machine (balanced) as most effective for demographic and clinical data, and Logistic Regression (balanced) when adding thicknesses and volumes of MRI data. The metrics were improve in the second case (AUC ROC of 0.84). Significant predictors include olfactory dysfunction, motor symptoms, psychomotor speed, and third ventricle dilation.
引用
收藏
页码:61 / 70
页数:10
相关论文
共 50 条
  • [21] Comparing machine learning and deep learning models to predict cognition progression in Parkinson's disease
    Bernal, Edgar A.
    Yang, Shu
    Herbst, Konnor
    Venuto, Charles S.
    CTS-CLINICAL AND TRANSLATIONAL SCIENCE, 2024, 17 (11):
  • [22] Detecting Sensitive Mobility Features for Parkinson's Disease Stages Via Machine Learning
    Mirelman, Anat
    Ben Or Frank, Mor
    Melamed, Michal
    Granovsky, Lena
    Nieuwboer, Alice
    Rochester, Lynn
    Del Din, Silvia
    Avanzino, Laura
    Pelosin, Elisa
    Bloem, Bastiaan R.
    Della Croce, Ugo
    Cereatti, Andrea
    Bonato, Paolo
    Camicioli, Richard
    Ellis, Theresa
    Hamilton, Jamie L.
    Hass, Chris J.
    Almeida, Quincy J.
    Inbal, Maidan
    Thaler, Avner
    Shirvan, Julia
    Cedarbaum, Jesse M.
    Giladi, Nir
    Hausdorff, Jeffrey M.
    MOVEMENT DISORDERS, 2021, 36 (09) : 2144 - 2155
  • [23] Machine Learning Recognizes Stages of Parkinson’s Disease Using Magnetic Resonance Imaging
    Chudzik, Artur
    Sensors, 2024, 24 (24)
  • [24] Predicting Parkinson's Disease Using a Deep-Learning Algorithm to Analyze Prodromal Medical and Prescription Data
    Koo, Youngwook
    Kim, Minki
    Lee, Woong-Woo
    JOURNAL OF CLINICAL NEUROLOGY, 2025, 21 (01): : 21 - 30
  • [25] Accuracy Improvement for Predicting Parkinson's Disease Progression
    Nilashi, Mehrbakhsh
    Ibrahim, Othman
    Ahani, Ali
    SCIENTIFIC REPORTS, 2016, 6
  • [26] Federated Learning of Explainable Artificial Intelligence Models for Predicting Parkinson's Disease Progression
    Barcena, Jose Luis Corcuera
    Ducange, Pietro
    Marcelloni, Francesco
    Renda, Alessandro
    Ruffini, Fabrizio
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, XAI 2023, PT I, 2023, 1901 : 630 - 648
  • [27] Accuracy Improvement for Predicting Parkinson’s Disease Progression
    Mehrbakhsh Nilashi
    Othman Ibrahim
    Ali Ahani
    Scientific Reports, 6
  • [28] Predicting Parkinson's Disease Progression with Random Forests
    Qian, Shuxin
    PROCEEDINGS OF 2024 4TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND INTELLIGENT COMPUTING, BIC 2024, 2024, : 191 - 199
  • [29] Prodromal diagnosis of Parkinson's disease
    Montgomery, Erwin B., Jr.
    MOVEMENT DISORDERS, 2012, 27 (11) : 1467 - 1467
  • [30] Psychosis in Prodromal Parkinson's disease
    Pachi, I.
    Maraki, M.
    Kosmidis, M.
    Yannakoulia, M.
    Dardiotis, E.
    Hadjigeorgiou, G.
    Sakka, P.
    Xiromerisiou, G.
    Stamelou, M.
    Scarmeas, N.
    Stefanis, L.
    MOVEMENT DISORDERS, 2019, 34 : S154 - S154