Multi-modality machine learning predicting Parkinson's disease

被引:46
|
作者
Makarious, Mary B. [1 ,2 ,3 ]
Leonard, Hampton L. [1 ,4 ,5 ,6 ]
Vitale, Dan [4 ,5 ]
Iwaki, Hirotaka [1 ,4 ,5 ]
Sargent, Lana [1 ,4 ,7 ,8 ]
Dadu, Anant [9 ]
Violich, Ivo [10 ]
Hutchins, Elizabeth [11 ]
Saffo, David [12 ]
Bandres-Ciga, Sara [1 ]
Kim, Jonggeol Jeff [1 ,13 ]
Song, Yeajin [1 ,5 ]
Maleknia, Melina [14 ]
Bookman, Matt [15 ]
Nojopranoto, Willy [15 ]
Campbell, Roy H. [9 ]
Hashemi, Sayed Hadi [9 ]
Botia, Juan A. [16 ,17 ]
Carter, John F. [18 ]
Craig, David W. [10 ]
Van Keuren-Jensen, Kendall [11 ]
Morris, Huw R. [2 ,3 ]
Hardy, John A. [2 ,3 ,19 ,20 ,21 ,22 ]
Blauwendraat, Cornelis [1 ]
Singleton, Andrew B. [1 ,4 ]
Faghri, Faraz [1 ,4 ,5 ]
Nalls, Mike A. [1 ,4 ,5 ]
机构
[1] NIA, Neurogenet Lab, NIH, Bethesda, MD 20892 USA
[2] UCL Queen Sq Inst Neurol, Dept Clin & Movement Neurosci, London, England
[3] UCL, UCL Movement Disorders Ctr, London, England
[4] NIH, Ctr Alzheimers & Related Dementias, Bethesda, MD 20814 USA
[5] Data Tecn Int LLC, Glen Echo, MD 20812 USA
[6] German Ctr Neurodegenerat Dis DZNE, Tubingen, Germany
[7] Virginia Commonwealth Univ, Sch Nursing, Richmond, VA USA
[8] Virginia Commonwealth Univ, Sch Pharm, Geriatr Pharmacotherapy Program, Richmond, VA USA
[9] Univ Illinois, Dept Comp Sci, Urbana, IL USA
[10] Univ Southern Calif, Inst Translat Genom, Los Angeles, CA USA
[11] Translat Genom Res Inst TGen, Neurogen Div, Phoenix, AZ USA
[12] Northeastern Univ, Coll Comp Sci, Boston, MA 02115 USA
[13] Queen Mary Univ London, Wolfson Inst Prevent Med, Prevent Neurol Unit, London, England
[14] Georgia Inst Technol, Atlanta, GA USA
[15] Verily Life Sci, San Francisco, CA USA
[16] UCL Queen Sq Inst Neurol, Dept Mol Neurosci, London, England
[17] Univ Murcia, Dept Ingn Informac & Comun, Murcia, Spain
[18] ModelOp, Chicago, IL USA
[19] UK Dementia Res Inst, London, England
[20] Dept Neurodegenerat Dis, London, England
[21] Reta Lila Weston Inst, London, England
[22] Hong Kong Univ Sci & Technol, Inst Adv Study, Hong Kong, Peoples R China
基金
美国国家卫生研究院;
关键词
SMELL IDENTIFICATION TEST; HEALTH; RISK; UNIVERSITY; DIAGNOSIS; ONSET;
D O I
10.1038/s41531-022-00288-w
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Personalized medicine promises individualized disease prediction and treatment. The convergence of machine learning (ML) and available multimodal data is key moving forward. We build upon previous work to deliver multimodal predictions of Parkinson's disease (PD) risk and systematically develop a model using GenoML, an automated ML package, to make improved multi-omic predictions of PD, validated in an external cohort. We investigated top features, constructed hypothesis-free disease-relevant networks, and investigated drug-gene interactions. We performed automated ML on multimodal data from the Parkinson's progression marker initiative (PPMI). After selecting the best performing algorithm, all PPMI data was used to tune the selected model. The model was validated in the Parkinson's Disease Biomarker Program (PDBP) dataset. Our initial model showed an area under the curve (AUC) of 89.72% for the diagnosis of PD. The tuned model was then tested for validation on external data (PDBP, AUC 85.03%). Optimizing thresholds for classification increased the diagnosis prediction accuracy and other metrics. Finally, networks were built to identify gene communities specific to PD. Combining data modalities outperforms the single biomarker paradigm. UPSIT and PRS contributed most to the predictive power of the model, but the accuracy of these are supplemented by many smaller effect transcripts and risk SNPs. Our model is best suited to identifying large groups of individuals to monitor within a health registry or biobank to prioritize for further testing. This approach allows complex predictive models to be reproducible and accessible to the community, with the package, code, and results publicly available.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Multi-modality machine learning predicting Parkinson’s disease
    Mary B. Makarious
    Hampton L. Leonard
    Dan Vitale
    Hirotaka Iwaki
    Lana Sargent
    Anant Dadu
    Ivo Violich
    Elizabeth Hutchins
    David Saffo
    Sara Bandres-Ciga
    Jonggeol Jeff Kim
    Yeajin Song
    Melina Maleknia
    Matt Bookman
    Willy Nojopranoto
    Roy H. Campbell
    Sayed Hadi Hashemi
    Juan A. Botia
    John F. Carter
    David W. Craig
    Kendall Van Keuren-Jensen
    Huw R. Morris
    John A. Hardy
    Cornelis Blauwendraat
    Andrew B. Singleton
    Faraz Faghri
    Mike A. Nalls
    npj Parkinson's Disease, 8
  • [2] Cardiovascular dysfunction in untreated Parkinson's disease: A multi-modality assessment
    Strano, Stefano
    Fanciulli, Alessandra
    Rizzo, Massimiliano
    Marinelli, Paolo
    Palange, Paolo
    Tiple, Donna
    De Vincentis, Giuseppe
    Calcagnini, Giovanni
    Censi, Federica
    Meco, Giuseppe
    Colosimo, Carlo
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2016, 370 : 251 - 255
  • [3] A Fully Automatic Framework for Parkinson's Disease Diagnosis by Multi-Modality Images
    Xu, Jiahang
    Jiao, Fangyang
    Huang, Yechong
    Luo, Xinzhe
    Xu, Qian
    Li, Ling
    Liu, Xueling
    Zuo, Chuantao
    Wu, Ping
    Zhuang, Xiahai
    FRONTIERS IN NEUROSCIENCE, 2019, 13
  • [4] Power of Multi-Modality Variables in Predicting Parkinsons Disease Progression
    Jiang, Yishan
    Yang, Hyung-Jeong
    Kim, Jahae
    Tang, Zhenzhou
    Ruan, Xiukai
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2025, 29 (02) : 1343 - 1356
  • [5] Multi-modality MRI for Alzheimer’s disease detection using deep learning
    Latifa Houria
    Noureddine Belkhamsa
    Assia Cherfa
    Yazid Cherfa
    Physical and Engineering Sciences in Medicine, 2022, 45 : 1043 - 1053
  • [6] Multi-modality MRI for Alzheimer's disease detection using deep learning
    Houria, Latifa
    Belkhamsa, Noureddine
    Cherfa, Assia
    Cherfa, Yazid
    PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2022, 45 (04) : 1043 - 1053
  • [7] MULTI-MODALITY FEATURE SELECTION WITH ADAPTIVE SIMILARITY LEARNING FOR CLASSIFICATION OF ALZHEIMER'S DISEASE
    Zu, Chen
    Wang, Yan
    Zhou, Luping
    Wang, Lei
    Zhang, Daoqiang
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 1542 - 1545
  • [8] Machine Learning Multi-Modality Fusion Approaches Outperform Single-Modality & Traditional Approaches
    Garagic, Denis
    Pelgrift, Daniel
    Peskoe, Jacob
    Hagan, Ronald D.
    Zulch, Peter
    Rhodes, Bradley J.
    2021 IEEE AEROSPACE CONFERENCE (AEROCONF 2021), 2021,
  • [9] Multi-Modality Sparse Representation for Alzheimer's Disease Classification
    Kwak, Kichang
    Yun, Hyuk Jin
    Park, Gilsoon
    Lee, Jong-Min
    JOURNAL OF ALZHEIMERS DISEASE, 2018, 65 (03) : 807 - 817
  • [10] Confidence-aware multi-modality learning for eye disease screening
    Zou, Ke
    Lin, Tian
    Han, Zongbo
    Wang, Meng
    Yuan, Xuedong
    Chen, Haoyu
    Zhang, Changqing
    Shen, Xiaojing
    Fu, Huazhu
    MEDICAL IMAGE ANALYSIS, 2024, 96