Multi-modality machine learning predicting Parkinson's disease

被引:46
|
作者
Makarious, Mary B. [1 ,2 ,3 ]
Leonard, Hampton L. [1 ,4 ,5 ,6 ]
Vitale, Dan [4 ,5 ]
Iwaki, Hirotaka [1 ,4 ,5 ]
Sargent, Lana [1 ,4 ,7 ,8 ]
Dadu, Anant [9 ]
Violich, Ivo [10 ]
Hutchins, Elizabeth [11 ]
Saffo, David [12 ]
Bandres-Ciga, Sara [1 ]
Kim, Jonggeol Jeff [1 ,13 ]
Song, Yeajin [1 ,5 ]
Maleknia, Melina [14 ]
Bookman, Matt [15 ]
Nojopranoto, Willy [15 ]
Campbell, Roy H. [9 ]
Hashemi, Sayed Hadi [9 ]
Botia, Juan A. [16 ,17 ]
Carter, John F. [18 ]
Craig, David W. [10 ]
Van Keuren-Jensen, Kendall [11 ]
Morris, Huw R. [2 ,3 ]
Hardy, John A. [2 ,3 ,19 ,20 ,21 ,22 ]
Blauwendraat, Cornelis [1 ]
Singleton, Andrew B. [1 ,4 ]
Faghri, Faraz [1 ,4 ,5 ]
Nalls, Mike A. [1 ,4 ,5 ]
机构
[1] NIA, Neurogenet Lab, NIH, Bethesda, MD 20892 USA
[2] UCL Queen Sq Inst Neurol, Dept Clin & Movement Neurosci, London, England
[3] UCL, UCL Movement Disorders Ctr, London, England
[4] NIH, Ctr Alzheimers & Related Dementias, Bethesda, MD 20814 USA
[5] Data Tecn Int LLC, Glen Echo, MD 20812 USA
[6] German Ctr Neurodegenerat Dis DZNE, Tubingen, Germany
[7] Virginia Commonwealth Univ, Sch Nursing, Richmond, VA USA
[8] Virginia Commonwealth Univ, Sch Pharm, Geriatr Pharmacotherapy Program, Richmond, VA USA
[9] Univ Illinois, Dept Comp Sci, Urbana, IL USA
[10] Univ Southern Calif, Inst Translat Genom, Los Angeles, CA USA
[11] Translat Genom Res Inst TGen, Neurogen Div, Phoenix, AZ USA
[12] Northeastern Univ, Coll Comp Sci, Boston, MA 02115 USA
[13] Queen Mary Univ London, Wolfson Inst Prevent Med, Prevent Neurol Unit, London, England
[14] Georgia Inst Technol, Atlanta, GA USA
[15] Verily Life Sci, San Francisco, CA USA
[16] UCL Queen Sq Inst Neurol, Dept Mol Neurosci, London, England
[17] Univ Murcia, Dept Ingn Informac & Comun, Murcia, Spain
[18] ModelOp, Chicago, IL USA
[19] UK Dementia Res Inst, London, England
[20] Dept Neurodegenerat Dis, London, England
[21] Reta Lila Weston Inst, London, England
[22] Hong Kong Univ Sci & Technol, Inst Adv Study, Hong Kong, Peoples R China
基金
美国国家卫生研究院;
关键词
SMELL IDENTIFICATION TEST; HEALTH; RISK; UNIVERSITY; DIAGNOSIS; ONSET;
D O I
10.1038/s41531-022-00288-w
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Personalized medicine promises individualized disease prediction and treatment. The convergence of machine learning (ML) and available multimodal data is key moving forward. We build upon previous work to deliver multimodal predictions of Parkinson's disease (PD) risk and systematically develop a model using GenoML, an automated ML package, to make improved multi-omic predictions of PD, validated in an external cohort. We investigated top features, constructed hypothesis-free disease-relevant networks, and investigated drug-gene interactions. We performed automated ML on multimodal data from the Parkinson's progression marker initiative (PPMI). After selecting the best performing algorithm, all PPMI data was used to tune the selected model. The model was validated in the Parkinson's Disease Biomarker Program (PDBP) dataset. Our initial model showed an area under the curve (AUC) of 89.72% for the diagnosis of PD. The tuned model was then tested for validation on external data (PDBP, AUC 85.03%). Optimizing thresholds for classification increased the diagnosis prediction accuracy and other metrics. Finally, networks were built to identify gene communities specific to PD. Combining data modalities outperforms the single biomarker paradigm. UPSIT and PRS contributed most to the predictive power of the model, but the accuracy of these are supplemented by many smaller effect transcripts and risk SNPs. Our model is best suited to identifying large groups of individuals to monitor within a health registry or biobank to prioritize for further testing. This approach allows complex predictive models to be reproducible and accessible to the community, with the package, code, and results publicly available.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Few-shot Learning for Multi-Modality Tasks
    Chen, Jie
    Ye, Qixiang
    Yang, Xiaoshan
    Zhou, S. Kevin
    Hong, Xiaopeng
    Zhang, Li
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 5673 - 5674
  • [32] Learning Latent Factors in Linked Multi-modality Data
    He, Tiantian
    Chan, Keith C. C.
    FOUNDATIONS OF INTELLIGENT SYSTEMS (ISMIS 2018), 2018, 11177 : 214 - 224
  • [33] A ready-to-use machine learning tool for symmetric multi-modality registration of brain MRI
    Juan Eugenio Iglesias
    Scientific Reports, 13 (1)
  • [34] Learning to Recover from Multi-Modality Errors for Non-Autoregressive Neural Machine Translation
    Ran, Qiu
    Lin, Yankai
    Li, Peng
    Zhou, Jie
    58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), 2020, : 3059 - 3069
  • [35] A ready-to-use machine learning tool for symmetric multi-modality registration of brain MRI
    Iglesias, Juan Eugenio
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [36] Predicting Parkinson's Disease Progression: Analyzing Prodromal Stages Through Machine Learning
    Martinez-Eguiluz, Maitane
    Muguerz, Javier
    Arbelaitz, Olatz
    Gurrutxaga, Ibai
    Carlos Gomez-Esteban, Juan
    Murueta-Goyena, Ane
    Gabilondo, Inigo
    ADVANCES IN ARTIFICIAL INTELLIGENCE, CAEPIA 2024, 2024, : 61 - 70
  • [37] Predicting Metamorphic Changes In Parkinson's Disease Patients Using Machine Learning Algorithms
    Mary, G. Prema Arokia
    Suganthi, N.
    Hema, M. S.
    Dharshini, M. Hari
    Vaishaali, K.
    Sri, M. Monika
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (11): : 147 - 152
  • [38] Predicting patients with Parkinson's disease using Machine Learning and ensemble voting technique
    Shawki Saleh
    Bouchaib Cherradi
    Oussama El Gannour
    Soufiane Hamida
    Omar Bouattane
    Multimedia Tools and Applications, 2024, 83 : 33207 - 33234
  • [39] Multi-Modality Cascaded Convolutional Neural Networks for Alzheimer’s Disease Diagnosis
    Manhua Liu
    Danni Cheng
    Kundong Wang
    Yaping Wang
    Neuroinformatics, 2018, 16 : 295 - 308
  • [40] Predicting patients with Parkinson's disease using Machine Learning and ensemble voting technique
    Saleh, Shawki
    Cherradi, Bouchaib
    El Gannour, Oussama
    Hamida, Soufiane
    Bouattane, Omar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (11) : 33207 - 33234