Classification of Parkinson’s disease and its stages using machine learning

被引:0
|
作者
John Michael Templeton
Christian Poellabauer
Sandra Schneider
机构
[1] Florida International University,Department of Computing and Information Sciences
[2] Saint Mary’s College,Department of Communicative Sciences and Disorders
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
As digital health technology becomes more pervasive, machine learning (ML) provides a robust way to analyze and interpret the myriad of collected features. The purpose of this preliminary work was to use ML classification to assess the benefits and relevance of neurocognitive features both tablet-based assessments and self-reported metrics, as they relate to Parkinson’s Disease (PD) and its stages [Hoehn and Yahr (H&Y) Stages 1–5]. Further, this work aims to compare perceived versus sensor-based neurocognitive abilities. In this study, 75 participants (n=50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = 50$$\end{document} PD; n=25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = 25$$\end{document} control) completed 14 tablet-based neurocognitive functional tests (e.g., motor, memory, speech, executive, and multifunction), functional movement assessments (e.g., Berg Balance Scale), and standardized health questionnaires (e.g., PDQ-39). Decision tree classification of sensor-based features allowed for the discrimination of PD from healthy controls with an accuracy of 92.6%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$92.6\%$$\end{document}, and early and advanced stages of PD with an accuracy of 73.7%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$73.7\%$$\end{document}; compared to the current gold standard tools [e.g., standardized health questionnaires (78.3%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$78.3\%$$\end{document} accuracy) and functional movement assessments (70%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$70\%$$\end{document} accuracy)]. Significant features were also identified using decision tree classification. Device magnitude of acceleration was significant in 12 of 14 tests (85.7%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$85.7\%$$\end{document}), regardless of test type. For classification between diagnosed and control populations, 17 motor (e.g., device magnitude of acceleration), 9 accuracy (e.g., number of correct/incorrect interactions), and 8 timing features (e.g., time to between interactions) were significant. For classification between early (H&Y Stages 1 and 2) and advanced (H&Y Stages 3, 4, and 5) stages of PD, 7 motor, 12 accuracy, and 14 timing features were significant. Finally, this work depicts that perceived functionality of individuals with PD differed from sensor-based functionalities. In early-stage PD was shown to be 21.6%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$21.6\%$$\end{document} lower than sensor-based scores with notable perceived deficits in memory and executive function. However, individuals in advanced stages had elevated perceptions (1.57x) for executive and behavioral functions compared to early-stage populations. Machine learning in digital health systems allows for a more comprehensive understanding of neurodegenerative diseases and their stages and may also depict new features that influence the ways digital health technology should be configured.
引用
收藏
相关论文
共 50 条
  • [1] Classification of Parkinson's disease and its stages using machine learning
    Templeton, John Michael
    Poellabauer, Christian
    Schneider, Sandra
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [2] Detection and Classification of Early Stages of Parkinson's Disease Through Wearable Sensors and Machine Learning
    Shcherbak, Aleksei
    Kovalenko, Ekaterina
    Somov, Andrey
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [3] Classification of Parkinson's Disease Using Machine Learning with MoCA Response Dynamics
    Chudzik, Artur
    Przybyszewski, Andrzej W.
    APPLIED SCIENCES-BASEL, 2024, 14 (07):
  • [4] Machine Learning Recognizes Stages of Parkinson’s Disease Using Magnetic Resonance Imaging
    Chudzik, Artur
    Sensors, 2024, 24 (24)
  • [5] Comparison of Machine Learning Techniques for the Identification of the Stages of Parkinson's Disease
    Deena, P. F.
    Raimond, Kumudha
    COMPUTATIONAL INTELLIGENCE, CYBER SECURITY AND COMPUTATIONAL MODELS, ICC3 2015, 2016, 412 : 247 - 259
  • [6] Parkinson's disease classification using machine learning algorithms: performance analysis and comparison
    Ouhmida, Asmae
    Raihani, Abdelhadi
    Cherradi, Bouchaib
    Lamalem, Yasser
    2022 2ND INTERNATIONAL CONFERENCE ON INNOVATIVE RESEARCH IN APPLIED SCIENCE, ENGINEERING AND TECHNOLOGY (IRASET'2022), 2022, : 606 - 611
  • [7] Classification of Parkinson Disease Based on Patient's Voice Signal Using Machine Learning
    Ahmed, Imran
    Aljahdali, Sultan
    Khan, Muhammad Shakeel
    Kaddoura, Sanaa
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 32 (02): : 705 - 722
  • [8] Classification of Neurodegenerative Disease Stages using Ensemble Machine Learning Classifiers
    Rohini, M.
    Surendran, D.
    2ND INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ADVANCED COMPUTING ICRTAC -DISRUP - TIV INNOVATION , 2019, 2019, 165 : 66 - 73
  • [9] Gait Classification of Parkinson's Disease with Supervised Machine Learning Approach
    Goh, Choon-Hian
    Koh, Chee Hong
    Chong, Yu Zheng
    Lim, Wei Yin
    2022 IEEE-EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES, IECBES, 2022, : 112 - 116
  • [10] Classification of Parkinson's disease motor phenotype: a machine learning approach
    Shirahige, Livia
    Leimig, Brenda
    Baltar, Adriana
    Bezerra, Amanda
    Ferreira de Brito, Caio Vinicius
    Oliveira do Nascimento, Yasmin Samara
    Gomes, Juliana Carneiro
    Teo, Wei-Peng
    dos Santos, Wellignton Pinheiro
    Cairrao, Marcelo
    Fonseca, Andre
    Monte-Silva, Katia
    JOURNAL OF NEURAL TRANSMISSION, 2022, 129 (12) : 1447 - 1461