Classification of Parkinson’s disease and its stages using machine learning

被引:0
|
作者
John Michael Templeton
Christian Poellabauer
Sandra Schneider
机构
[1] Florida International University,Department of Computing and Information Sciences
[2] Saint Mary’s College,Department of Communicative Sciences and Disorders
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
As digital health technology becomes more pervasive, machine learning (ML) provides a robust way to analyze and interpret the myriad of collected features. The purpose of this preliminary work was to use ML classification to assess the benefits and relevance of neurocognitive features both tablet-based assessments and self-reported metrics, as they relate to Parkinson’s Disease (PD) and its stages [Hoehn and Yahr (H&Y) Stages 1–5]. Further, this work aims to compare perceived versus sensor-based neurocognitive abilities. In this study, 75 participants (n=50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = 50$$\end{document} PD; n=25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = 25$$\end{document} control) completed 14 tablet-based neurocognitive functional tests (e.g., motor, memory, speech, executive, and multifunction), functional movement assessments (e.g., Berg Balance Scale), and standardized health questionnaires (e.g., PDQ-39). Decision tree classification of sensor-based features allowed for the discrimination of PD from healthy controls with an accuracy of 92.6%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$92.6\%$$\end{document}, and early and advanced stages of PD with an accuracy of 73.7%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$73.7\%$$\end{document}; compared to the current gold standard tools [e.g., standardized health questionnaires (78.3%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$78.3\%$$\end{document} accuracy) and functional movement assessments (70%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$70\%$$\end{document} accuracy)]. Significant features were also identified using decision tree classification. Device magnitude of acceleration was significant in 12 of 14 tests (85.7%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$85.7\%$$\end{document}), regardless of test type. For classification between diagnosed and control populations, 17 motor (e.g., device magnitude of acceleration), 9 accuracy (e.g., number of correct/incorrect interactions), and 8 timing features (e.g., time to between interactions) were significant. For classification between early (H&Y Stages 1 and 2) and advanced (H&Y Stages 3, 4, and 5) stages of PD, 7 motor, 12 accuracy, and 14 timing features were significant. Finally, this work depicts that perceived functionality of individuals with PD differed from sensor-based functionalities. In early-stage PD was shown to be 21.6%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$21.6\%$$\end{document} lower than sensor-based scores with notable perceived deficits in memory and executive function. However, individuals in advanced stages had elevated perceptions (1.57x) for executive and behavioral functions compared to early-stage populations. Machine learning in digital health systems allows for a more comprehensive understanding of neurodegenerative diseases and their stages and may also depict new features that influence the ways digital health technology should be configured.
引用
收藏
相关论文
共 50 条
  • [11] Classification of Parkinson’s disease motor phenotype: a machine learning approach
    Lívia Shirahige
    Brenda Leimig
    Adriana Baltar
    Amanda Bezerra
    Caio Vinícius Ferreira de Brito
    Yasmin Samara Oliveira do Nascimento
    Juliana Carneiro Gomes
    Wei-Peng Teo
    Wellignton Pinheiro dos Santos
    Marcelo Cairrão
    André Fonseca
    Kátia Monte-Silva
    Journal of Neural Transmission, 2022, 129 : 1447 - 1461
  • [12] Machine Learning-Based Classification of Parkinson's Disease Patients Using Speech Biomarkers
    Hossain, Mohammad Amran
    Amenta, Francesco
    JOURNAL OF PARKINSONS DISEASE, 2024, 14 (01) : 95 - 109
  • [13] Parkinson's Disease Classification Using Machine Learning Approaches and Resting-State EEG
    Yang, Chia-Yen
    Huang, Ying-Zu
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2022, 42 (02) : 263 - 270
  • [14] Parkinson's disease resting tremor severity classification using machine learning with resampling techniques
    Channa, Asma
    Cramariuc, Oana
    Memon, Madeha
    Popescu, Nirvana
    Mammone, Nadia
    Ruggeri, Giuseppe
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [15] Parkinson’s Disease Classification Using Machine Learning Approaches and Resting-State EEG
    Chia-Yen Yang
    Ying-Zu Huang
    Journal of Medical and Biological Engineering, 2022, 42 : 263 - 270
  • [16] Machine learning approach for classification of Parkinson disease using acoustic features
    Mittal V.
    Sharma R.K.
    Journal of Reliable Intelligent Environments, 2021, 7 (03) : 233 - 239
  • [17] Prediction of Parkinson's Disease Using Machine Learning Methods
    Zhang, Jiayu
    Zhou, Wenchao
    Yu, Hongmei
    Wang, Tong
    Wang, Xiaqiong
    Liu, Long
    Wen, Yalu
    BIOMOLECULES, 2023, 13 (12)
  • [18] Parkinson's Disease Prediction Using Machine Learning Approaches
    Gokul, S.
    Sivachitra, M.
    Vijayachitra, S.
    2013 FIFTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (ICOAC), 2013, : 246 - 252
  • [19] Identification of Parkinson's Disease Using Machine Learning Algorithms
    Ulagamuthalvi, V
    Kulanthaivel, G.
    Reddy, G. Nikhil
    Venugopal, G.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (02): : 576 - 579
  • [20] Parkinson's Disease Diagnosis Using Machine Learning and Voice
    Wroge, Timothy J.
    Ozkanca, Yasin
    Demiroglu, Cenk
    Si, Dong
    Atkins, David C.
    Ghomi, Reza Hosseini
    2018 IEEE SIGNAL PROCESSING IN MEDICINE AND BIOLOGY SYMPOSIUM (SPMB), 2018,