Self-inspired learning for denoising live-cell super-resolution microscopy

被引:2
|
作者
Qu, Liying [1 ]
Zhao, Shiqun [2 ]
Huang, Yuanyuan [1 ]
Ye, Xianxin [2 ]
Wang, Kunhao [2 ]
Liu, Yuzhen [1 ]
Liu, Xianming [3 ]
Mao, Heng [4 ]
Hu, Guangwei [5 ]
Chen, Wei [6 ]
Guo, Changliang [2 ]
He, Jiaye [7 ,8 ]
Tan, Jiubin [9 ]
Li, Haoyu [1 ,9 ,10 ,11 ]
Chen, Liangyi [2 ,12 ,13 ]
Zhao, Weisong [1 ,9 ,10 ,11 ]
机构
[1] Harbin Inst Technol, Innovat Photon & Imaging Ctr, Sch Instrumentat Sci & Engn, Harbin, Peoples R China
[2] Peking Univ, Natl Biomed Imaging Ctr, Inst Mol Med,State Key Lab Membrane Biol, Sch Future Technol,Beijing Key Lab Cardiometab Mol, Beijing, Peoples R China
[3] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin, Peoples R China
[4] Peking Univ, Sch Math Sci, Beijing, Peoples R China
[5] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
[6] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Adv Biomed Imaging Facil, Wuhan, Peoples R China
[7] Natl Innovat Ctr Adv Med Devices, Shenzhen, Peoples R China
[8] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
[9] Harbin Inst Technol, Key Lab Ultra Precis Intelligent Instrumentat, Minist Ind & Informat Technol, Harbin, Peoples R China
[10] Harbin Inst Technol, Frontiers Sci Ctr Matter Behave Space Environm, Harbin, Peoples R China
[11] Harbin Inst Technol, Minist Educ, Key Lab Microsyst & Microstruct Mfg, Harbin, Peoples R China
[12] PKU, IDG McGovern Inst Brain Res, Beijing, Peoples R China
[13] Beijing Acad Artificial Intelligence, Beijing, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金; 新加坡国家研究基金会;
关键词
RESOLUTION; PROTEINS;
D O I
10.1038/s41592-024-02400-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Every collected photon is precious in live-cell super-resolution (SR) microscopy. Here, we describe a data-efficient, deep learning-based denoising solution to improve diverse SR imaging modalities. The method, SN2N, is a Self-inspired Noise2Noise module with self-supervised data generation and self-constrained learning process. SN2N is fully competitive with supervised learning methods and circumvents the need for large training set and clean ground truth, requiring only a single noisy frame for training. We show that SN2N improves photon efficiency by one-to-two orders of magnitude and is compatible with multiple imaging modalities for volumetric, multicolor, time-lapse SR microscopy. We further integrated SN2N into different SR reconstruction algorithms to effectively mitigate image artifacts. We anticipate SN2N will enable improved live-SR imaging and inspire further advances. SN2N, a Self-inspired Noise2Noise module, offers a versatile solution for volumetric time-lapse super-resolution imaging of live cells. SN2N uses self-supervised data generation and self-constrained learning for training with a single noisy frame.
引用
收藏
页码:1895 / 1908
页数:14
相关论文
共 50 条
  • [41] Live-cell single-molecule and super-resolution imaging in bacteria
    Coupland, Benjamin
    Haas, Beth L.
    Hoye, Elizabeth
    Koropatkin, Nicole
    Matson, Jyl
    DiRita, Victor
    Martens, Eric
    Shapiro, Lucy
    Moerner, W. E.
    Biteen, Julie S.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [42] Understanding the Pathogenicity of Vibrio Cholerae via Two-Color Live-Cell Super-Resolution Microscopy
    Siv, Chanrith
    Haas, Beth L.
    Perault, Andrew I.
    DiRita, Victor J.
    Biteen, Julie S.
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 204A - 205A
  • [43] Fast, three-dimensional, live-cell super-resolution imaging with multiplane structured illumination microscopy
    Chen, Qian
    Gou, Wen
    Lu, Wenqing
    Li, Jie
    Wei, Yuhong
    Li, Haoyu
    Wang, Chengyu
    You, Wei
    Li, Zhengqian
    Dong, Dashan
    Bi, Xiuli
    Xiao, Bin
    Chen, Liangyi
    Shi, Kebin
    Fan, Junchao
    Huang, Xiaoshuai
    NATURE PHOTONICS, 2025,
  • [44] Enzymatic labeling of bacterial proteins for live-cell super-resolution imaging
    Ho, Samuel
    Tirrell, David
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [45] Live-cell super-resolution imaging of intrinsically fast moving flagellates
    Glogger, M.
    Stichler, S.
    Subota, I.
    Bertlein, S.
    Spindler, M-C
    Tessmar, J.
    Groll, J.
    Engstler, M.
    Fenz, S. F.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (07)
  • [46] Live-Cell Super-Resolution Fluorescence Imaging at High Spatiotemporal Resolutions
    Shim, Sang-Hee
    Jones, Sara A.
    He, Jiang
    Zhuang, Xiaowei
    BIOPHYSICAL JOURNAL, 2012, 102 (03) : 224A - 224A
  • [47] Graphene-Enabled, Spatially Controlled Electroporation of Adherent Cells for Live-Cell Super-resolution Microscopy
    Moon, Seonah
    Li, Wan
    Hauser, Meghan
    Xu, Ke
    ACS NANO, 2020, 14 (05) : 5609 - 5617
  • [48] Live-cell super-resolution microscopy reveals early stages in adhesion formation and rigidity sensing.
    Wolfenson, H.
    Liu, S.
    Cai, H.
    Wind, S.
    Hone, J.
    Sheetz, M.
    MOLECULAR BIOLOGY OF THE CELL, 2012, 23
  • [49] Spectrally Resolved, Functional Super-Resolution Microscopy Reveals Nanoscale Compositional Heterogeneity in Live-Cell Membranes
    Moon, Seonah
    Yan, Rui
    Kenny, Samuel J.
    Shyu, Yennie
    Xiang, Limin
    Li, Wan
    Xu, Ke
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (32) : 10944 - 10947
  • [50] Application and Development of Super-resolution Microscopy in Live Cell Imaging
    Zhang Jiao
    He Qin
    Wu Ze-Kai
    Yu Bin
    Qu Jun-Le
    Lin Dan-Ying
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2021, 48 (11) : 1301 - 1315