Self-inspired learning for denoising live-cell super-resolution microscopy

被引:2
|
作者
Qu, Liying [1 ]
Zhao, Shiqun [2 ]
Huang, Yuanyuan [1 ]
Ye, Xianxin [2 ]
Wang, Kunhao [2 ]
Liu, Yuzhen [1 ]
Liu, Xianming [3 ]
Mao, Heng [4 ]
Hu, Guangwei [5 ]
Chen, Wei [6 ]
Guo, Changliang [2 ]
He, Jiaye [7 ,8 ]
Tan, Jiubin [9 ]
Li, Haoyu [1 ,9 ,10 ,11 ]
Chen, Liangyi [2 ,12 ,13 ]
Zhao, Weisong [1 ,9 ,10 ,11 ]
机构
[1] Harbin Inst Technol, Innovat Photon & Imaging Ctr, Sch Instrumentat Sci & Engn, Harbin, Peoples R China
[2] Peking Univ, Natl Biomed Imaging Ctr, Inst Mol Med,State Key Lab Membrane Biol, Sch Future Technol,Beijing Key Lab Cardiometab Mol, Beijing, Peoples R China
[3] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin, Peoples R China
[4] Peking Univ, Sch Math Sci, Beijing, Peoples R China
[5] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
[6] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Adv Biomed Imaging Facil, Wuhan, Peoples R China
[7] Natl Innovat Ctr Adv Med Devices, Shenzhen, Peoples R China
[8] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
[9] Harbin Inst Technol, Key Lab Ultra Precis Intelligent Instrumentat, Minist Ind & Informat Technol, Harbin, Peoples R China
[10] Harbin Inst Technol, Frontiers Sci Ctr Matter Behave Space Environm, Harbin, Peoples R China
[11] Harbin Inst Technol, Minist Educ, Key Lab Microsyst & Microstruct Mfg, Harbin, Peoples R China
[12] PKU, IDG McGovern Inst Brain Res, Beijing, Peoples R China
[13] Beijing Acad Artificial Intelligence, Beijing, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金; 新加坡国家研究基金会;
关键词
RESOLUTION; PROTEINS;
D O I
10.1038/s41592-024-02400-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Every collected photon is precious in live-cell super-resolution (SR) microscopy. Here, we describe a data-efficient, deep learning-based denoising solution to improve diverse SR imaging modalities. The method, SN2N, is a Self-inspired Noise2Noise module with self-supervised data generation and self-constrained learning process. SN2N is fully competitive with supervised learning methods and circumvents the need for large training set and clean ground truth, requiring only a single noisy frame for training. We show that SN2N improves photon efficiency by one-to-two orders of magnitude and is compatible with multiple imaging modalities for volumetric, multicolor, time-lapse SR microscopy. We further integrated SN2N into different SR reconstruction algorithms to effectively mitigate image artifacts. We anticipate SN2N will enable improved live-SR imaging and inspire further advances. SN2N, a Self-inspired Noise2Noise module, offers a versatile solution for volumetric time-lapse super-resolution imaging of live cells. SN2N uses self-supervised data generation and self-constrained learning for training with a single noisy frame.
引用
收藏
页码:1895 / 1908
页数:14
相关论文
共 50 条
  • [11] Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy
    Weisong Zhao
    Shiqun Zhao
    Liuju Li
    Xiaoshuai Huang
    Shijia Xing
    Yulin Zhang
    Guohua Qiu
    Zhenqian Han
    Yingxu Shang
    De-en Sun
    Chunyan Shan
    Runlong Wu
    Lusheng Gu
    Shuwen Zhang
    Riwang Chen
    Jian Xiao
    Yanquan Mo
    Jianyong Wang
    Wei Ji
    Xing Chen
    Baoquan Ding
    Yanmei Liu
    Heng Mao
    Bao-Liang Song
    Jiubin Tan
    Jian Liu
    Haoyu Li
    Liangyi Chen
    Nature Biotechnology, 2022, 40 : 606 - 617
  • [12] Live-cell super-resolution microscopy with blue fluorescent protein TagBFP
    Klementieva, N. V.
    Lukyanov, K. A.
    Zagaynova, E. V.
    Mishin, A. S.
    JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 2018, 50 (06) : 552 - 552
  • [13] Light-induced cell damage in live-cell super-resolution microscopy
    Waeldchen, Sina
    Lehmann, Julian
    Klein, Teresa
    van de Linde, Sebastian
    Sauer, Markus
    SCIENTIFIC REPORTS, 2015, 5
  • [14] Light-induced cell damage in live-cell super-resolution microscopy
    Sina Wäldchen
    Julian Lehmann
    Teresa Klein
    Sebastian van de Linde
    Markus Sauer
    Scientific Reports, 5
  • [15] Self-supervised denoising for multimodal structured illumination microscopy enables long-term super-resolution live-cell imaging
    Xingye Chen
    Chang Qiao
    Tao Jiang
    Jiahao Liu
    Quan Meng
    Yunmin Zeng
    Haoyu Chen
    Hui Qiao
    Dong Li
    Jiamin Wu
    PhotoniX, 5
  • [16] Self-supervised denoising for multimodal structured illumination microscopy enables long-term super-resolution live-cell imaging
    Chen, Xingye
    Qiao, Chang
    Jiang, Tao
    Liu, Jiahao
    Meng, Quan
    Zeng, Yunmin
    Chen, Haoyu
    Qiao, Hui
    Li, Dong
    Wu, Jiamin
    PHOTONIX, 2024, 5 (01)
  • [17] Small-Molecule Fluorescent Probes for Live-Cell Super-Resolution Microscopy
    Wang, Lu
    Frei, Michelle S.
    Salim, Aleksandar
    Johnsson, Kai
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (07) : 2770 - 2781
  • [18] Photoregulated fluxional fluorophores for live-cell super-resolution microscopy with no apparent photobleaching
    Elias A. Halabi
    Dorothea Pinotsi
    Pablo Rivera-Fuentes
    Nature Communications, 10
  • [19] Photoregulated fluxional fluorophores for live-cell super-resolution microscopy with no apparent photobleaching
    Halabi, Elias A.
    Pinotsi, Dorothea
    Rivera-Fuentes, Pablo
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [20] Ultra-fast, universal super-resolution radial fluctuations (SRRF) algorithm for live-cell super-resolution microscopy
    Han, Yubing
    Lu, Xiao
    Zhang, Zhimin
    Liu, Wenjie
    Chen, Yuchen
    Liu, Xu
    Hao, Xiang
    Kuang, Cuifang
    OPTICS EXPRESS, 2019, 27 (26) : 38337 - 38348