Self-inspired learning for denoising live-cell super-resolution microscopy

被引:2
|
作者
Qu, Liying [1 ]
Zhao, Shiqun [2 ]
Huang, Yuanyuan [1 ]
Ye, Xianxin [2 ]
Wang, Kunhao [2 ]
Liu, Yuzhen [1 ]
Liu, Xianming [3 ]
Mao, Heng [4 ]
Hu, Guangwei [5 ]
Chen, Wei [6 ]
Guo, Changliang [2 ]
He, Jiaye [7 ,8 ]
Tan, Jiubin [9 ]
Li, Haoyu [1 ,9 ,10 ,11 ]
Chen, Liangyi [2 ,12 ,13 ]
Zhao, Weisong [1 ,9 ,10 ,11 ]
机构
[1] Harbin Inst Technol, Innovat Photon & Imaging Ctr, Sch Instrumentat Sci & Engn, Harbin, Peoples R China
[2] Peking Univ, Natl Biomed Imaging Ctr, Inst Mol Med,State Key Lab Membrane Biol, Sch Future Technol,Beijing Key Lab Cardiometab Mol, Beijing, Peoples R China
[3] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin, Peoples R China
[4] Peking Univ, Sch Math Sci, Beijing, Peoples R China
[5] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
[6] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Adv Biomed Imaging Facil, Wuhan, Peoples R China
[7] Natl Innovat Ctr Adv Med Devices, Shenzhen, Peoples R China
[8] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
[9] Harbin Inst Technol, Key Lab Ultra Precis Intelligent Instrumentat, Minist Ind & Informat Technol, Harbin, Peoples R China
[10] Harbin Inst Technol, Frontiers Sci Ctr Matter Behave Space Environm, Harbin, Peoples R China
[11] Harbin Inst Technol, Minist Educ, Key Lab Microsyst & Microstruct Mfg, Harbin, Peoples R China
[12] PKU, IDG McGovern Inst Brain Res, Beijing, Peoples R China
[13] Beijing Acad Artificial Intelligence, Beijing, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金; 新加坡国家研究基金会;
关键词
RESOLUTION; PROTEINS;
D O I
10.1038/s41592-024-02400-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Every collected photon is precious in live-cell super-resolution (SR) microscopy. Here, we describe a data-efficient, deep learning-based denoising solution to improve diverse SR imaging modalities. The method, SN2N, is a Self-inspired Noise2Noise module with self-supervised data generation and self-constrained learning process. SN2N is fully competitive with supervised learning methods and circumvents the need for large training set and clean ground truth, requiring only a single noisy frame for training. We show that SN2N improves photon efficiency by one-to-two orders of magnitude and is compatible with multiple imaging modalities for volumetric, multicolor, time-lapse SR microscopy. We further integrated SN2N into different SR reconstruction algorithms to effectively mitigate image artifacts. We anticipate SN2N will enable improved live-SR imaging and inspire further advances. SN2N, a Self-inspired Noise2Noise module, offers a versatile solution for volumetric time-lapse super-resolution imaging of live cells. SN2N uses self-supervised data generation and self-constrained learning for training with a single noisy frame.
引用
收藏
页码:1895 / 1908
页数:14
相关论文
共 50 条
  • [31] High-speed Live-cell Super-resolution Microscopy with Stochastically Switching Fluorophores
    Huang, Fang
    Hartwich, Tobias M. P.
    Rivera-Molina, Felix E.
    Lin, Yu
    Myers, Jordan R.
    Long, Jane J.
    Davidson, Michael W.
    Toomre, Derek
    Bewersdorf, Joerg
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2013,
  • [32] Organic fluorescent probes for live-cell super-resolution imaging
    Xinxin Duan
    Meng Zhang
    Yu-Hui Zhang
    Frontiers of Optoelectronics, 16
  • [33] Organic fluorescent probes for live-cell super-resolution imaging
    Duan, Xinxin
    Zhang, Meng
    Zhang, Yu-Hui
    FRONTIERS OF OPTOELECTRONICS, 2023, 16 (01)
  • [34] Organic fluorescent probes for live-cell super-resolution imaging
    Xinxin Duan
    Meng Zhang
    Yu-Hui Zhang
    Frontiers of Optoelectronics, 2023, 16 (04) : 30 - 41
  • [35] Direct Live-Cell Super-Resolution Imaging of Cellular DNA
    Benke, Alexander
    Meylan, Xavier
    Manley, Suliana
    BIOPHYSICAL JOURNAL, 2012, 102 (03) : 223A - 223A
  • [36] Under the Microscope: Single-Domain Antibodies for Live-Cell Imaging and Super-Resolution Microscopy
    Traenkle, Bjoern
    Rothbauer, Ulrich
    FRONTIERS IN IMMUNOLOGY, 2017, 8
  • [37] Minimal Tags for Rapid Dual-Color Live-Cell Labeling and Super-Resolution Microscopy
    Nikic, Ivana
    Plass, Tilman
    Schraidt, Oliver
    Szymanski, Jedrzej
    Briggs, John A. G.
    Schultz, Carsten
    Lemke, Edward A.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (08) : 2245 - 2249
  • [38] Hydroxylated Fluorescent Dyes for Live-Cell Labeling: Synthesis, Spectra and Super-Resolution STED Microscopy
    Butkevich, Alexey N.
    Belov, Vladimir N.
    Kolmakov, Kirill
    Sokolov, Viktor V.
    Shojaei, Heydar
    Sidenstein, Sven C.
    Kamin, Dirk
    Matthias, Jessica
    Vlijm, Rifka
    Engelhardt, Johann
    Hell, Stefan W.
    CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (50) : 12114 - 12119
  • [39] Conventional BODIPY Conjugates for Live-Cell Super-Resolution Microscopy and Single-Molecule Tracking
    Adhikari, Santosh
    Banerjee, Chiranjib
    Moscatelli, Joe
    Puchner, Elias M.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2020, (160): : 1 - 9
  • [40] Super-resolution Microscopy Approaches for Live Cell Imaging
    Godin, Antoine G.
    Lounis, Brahim
    Cognet, Laurent
    BIOPHYSICAL JOURNAL, 2014, 107 (08) : 1777 - 1784