Self-inspired learning for denoising live-cell super-resolution microscopy

被引:2
|
作者
Qu, Liying [1 ]
Zhao, Shiqun [2 ]
Huang, Yuanyuan [1 ]
Ye, Xianxin [2 ]
Wang, Kunhao [2 ]
Liu, Yuzhen [1 ]
Liu, Xianming [3 ]
Mao, Heng [4 ]
Hu, Guangwei [5 ]
Chen, Wei [6 ]
Guo, Changliang [2 ]
He, Jiaye [7 ,8 ]
Tan, Jiubin [9 ]
Li, Haoyu [1 ,9 ,10 ,11 ]
Chen, Liangyi [2 ,12 ,13 ]
Zhao, Weisong [1 ,9 ,10 ,11 ]
机构
[1] Harbin Inst Technol, Innovat Photon & Imaging Ctr, Sch Instrumentat Sci & Engn, Harbin, Peoples R China
[2] Peking Univ, Natl Biomed Imaging Ctr, Inst Mol Med,State Key Lab Membrane Biol, Sch Future Technol,Beijing Key Lab Cardiometab Mol, Beijing, Peoples R China
[3] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin, Peoples R China
[4] Peking Univ, Sch Math Sci, Beijing, Peoples R China
[5] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
[6] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Adv Biomed Imaging Facil, Wuhan, Peoples R China
[7] Natl Innovat Ctr Adv Med Devices, Shenzhen, Peoples R China
[8] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
[9] Harbin Inst Technol, Key Lab Ultra Precis Intelligent Instrumentat, Minist Ind & Informat Technol, Harbin, Peoples R China
[10] Harbin Inst Technol, Frontiers Sci Ctr Matter Behave Space Environm, Harbin, Peoples R China
[11] Harbin Inst Technol, Minist Educ, Key Lab Microsyst & Microstruct Mfg, Harbin, Peoples R China
[12] PKU, IDG McGovern Inst Brain Res, Beijing, Peoples R China
[13] Beijing Acad Artificial Intelligence, Beijing, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金; 新加坡国家研究基金会;
关键词
RESOLUTION; PROTEINS;
D O I
10.1038/s41592-024-02400-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Every collected photon is precious in live-cell super-resolution (SR) microscopy. Here, we describe a data-efficient, deep learning-based denoising solution to improve diverse SR imaging modalities. The method, SN2N, is a Self-inspired Noise2Noise module with self-supervised data generation and self-constrained learning process. SN2N is fully competitive with supervised learning methods and circumvents the need for large training set and clean ground truth, requiring only a single noisy frame for training. We show that SN2N improves photon efficiency by one-to-two orders of magnitude and is compatible with multiple imaging modalities for volumetric, multicolor, time-lapse SR microscopy. We further integrated SN2N into different SR reconstruction algorithms to effectively mitigate image artifacts. We anticipate SN2N will enable improved live-SR imaging and inspire further advances. SN2N, a Self-inspired Noise2Noise module, offers a versatile solution for volumetric time-lapse super-resolution imaging of live cells. SN2N uses self-supervised data generation and self-constrained learning for training with a single noisy frame.
引用
收藏
页码:1895 / 1908
页数:14
相关论文
共 50 条
  • [21] Live-cell super-resolution imaging with trimethoprim conjugates
    Wombacher R.
    Heidbreder M.
    Van De Linde S.
    Sheetz M.P.
    Heilemann M.
    Cornish V.W.
    Sauer M.
    Nature Methods, 2010, 7 (9) : 717 - 719
  • [22] Fluorescent proteins for live-cell imaging with super-resolution
    Nienhaus, Karin
    Nienhaus, G. Ulrich
    CHEMICAL SOCIETY REVIEWS, 2014, 43 (04) : 1088 - 1106
  • [23] PALM and STORM: Unlocking Live-Cell Super-Resolution
    Henriques, Ricardo
    Griffiths, Caron
    Rego, E. Hesper
    Mhlanga, Musa M.
    BIOPOLYMERS, 2011, 95 (05) : 322 - 331
  • [24] Live-cell super-resolution imaging with trimethoprim conjugates
    Wombacher, Richard
    Heidbreder, Meike
    van de Linde, Sebastian
    Sheetz, Michael P.
    Heilemann, Mike
    Cornish, Virginia W.
    Sauer, Markus
    NATURE METHODS, 2010, 7 (09) : 717 - 719
  • [25] Live-Cell Super-Resolution Imaging with Synthetic Fluorophores
    van de Linde, Sebastian
    Heilemann, Mike
    Sauer, Markus
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 63, 2012, 63 : 519 - 540
  • [26] Live-Cell Super-Resolution Imaging Goes Multicolor
    Klein, Teresa
    van de Linde, Sebastian
    Sauer, Markus
    CHEMBIOCHEM, 2012, 13 (13) : 1861 - 1863
  • [27] Live-cell super-resolution microscopy reveals how molecules enter and exit the nucleus
    Rieger, Bernd
    Berrevoets, Enya S.
    NATURE, 2025, : 607 - 608
  • [28] Dynamic live-cell super-resolution imaging with parallelized fluorescence emission difference microscopy
    He, Minfei
    Han, Yubing
    Gan, Yanhong
    Zhang, Zhimin
    Liu, Wenjie
    Xu, Liang
    Kuang, Cuifang
    Hao, Xiang
    Liu, Xu
    OPTICS COMMUNICATIONS, 2020, 460
  • [29] A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins
    Lukinavičius G.
    Umezawa K.
    Olivier N.
    Honigmann A.
    Yang G.
    Plass T.
    Mueller V.
    Reymond L.
    Corrêa Jr I.R.
    Luo Z.-G.
    Schultz C.
    Lemke E.A.
    Heppenstall P.
    Eggeling C.
    Manley S.
    Johnsson K.
    Nature Chemistry, 2013, 5 (2) : 132 - 139
  • [30] A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins
    Lukinavicius, Grazvydas
    Umezawa, Keitaro
    Olivier, Nicolas
    Honigmann, Alf
    Yang, Guoying
    Plass, Tilman
    Mueller, Veronika
    Reymond, Luc
    Correa, Ivan R., Jr.
    Luo, Zhen-Ge
    Schultz, Carsten
    Lemke, Edward A.
    Heppenstall, Paul
    Eggeling, Christian
    Manley, Suliana
    Johnsson, Kai
    NATURE CHEMISTRY, 2013, 5 (02) : 132 - 139