Self-inspired learning for denoising live-cell super-resolution microscopy

被引:2
|
作者
Qu, Liying [1 ]
Zhao, Shiqun [2 ]
Huang, Yuanyuan [1 ]
Ye, Xianxin [2 ]
Wang, Kunhao [2 ]
Liu, Yuzhen [1 ]
Liu, Xianming [3 ]
Mao, Heng [4 ]
Hu, Guangwei [5 ]
Chen, Wei [6 ]
Guo, Changliang [2 ]
He, Jiaye [7 ,8 ]
Tan, Jiubin [9 ]
Li, Haoyu [1 ,9 ,10 ,11 ]
Chen, Liangyi [2 ,12 ,13 ]
Zhao, Weisong [1 ,9 ,10 ,11 ]
机构
[1] Harbin Inst Technol, Innovat Photon & Imaging Ctr, Sch Instrumentat Sci & Engn, Harbin, Peoples R China
[2] Peking Univ, Natl Biomed Imaging Ctr, Inst Mol Med,State Key Lab Membrane Biol, Sch Future Technol,Beijing Key Lab Cardiometab Mol, Beijing, Peoples R China
[3] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin, Peoples R China
[4] Peking Univ, Sch Math Sci, Beijing, Peoples R China
[5] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
[6] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Adv Biomed Imaging Facil, Wuhan, Peoples R China
[7] Natl Innovat Ctr Adv Med Devices, Shenzhen, Peoples R China
[8] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
[9] Harbin Inst Technol, Key Lab Ultra Precis Intelligent Instrumentat, Minist Ind & Informat Technol, Harbin, Peoples R China
[10] Harbin Inst Technol, Frontiers Sci Ctr Matter Behave Space Environm, Harbin, Peoples R China
[11] Harbin Inst Technol, Minist Educ, Key Lab Microsyst & Microstruct Mfg, Harbin, Peoples R China
[12] PKU, IDG McGovern Inst Brain Res, Beijing, Peoples R China
[13] Beijing Acad Artificial Intelligence, Beijing, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金; 新加坡国家研究基金会;
关键词
RESOLUTION; PROTEINS;
D O I
10.1038/s41592-024-02400-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Every collected photon is precious in live-cell super-resolution (SR) microscopy. Here, we describe a data-efficient, deep learning-based denoising solution to improve diverse SR imaging modalities. The method, SN2N, is a Self-inspired Noise2Noise module with self-supervised data generation and self-constrained learning process. SN2N is fully competitive with supervised learning methods and circumvents the need for large training set and clean ground truth, requiring only a single noisy frame for training. We show that SN2N improves photon efficiency by one-to-two orders of magnitude and is compatible with multiple imaging modalities for volumetric, multicolor, time-lapse SR microscopy. We further integrated SN2N into different SR reconstruction algorithms to effectively mitigate image artifacts. We anticipate SN2N will enable improved live-SR imaging and inspire further advances. SN2N, a Self-inspired Noise2Noise module, offers a versatile solution for volumetric time-lapse super-resolution imaging of live cells. SN2N uses self-supervised data generation and self-constrained learning for training with a single noisy frame.
引用
收藏
页码:1895 / 1908
页数:14
相关论文
共 50 条
  • [1] Live-Cell Super-resolution Fluorescence Microscopy
    Mishin, A. S.
    Lukyanov, K. A.
    BIOCHEMISTRY-MOSCOW, 2019, 84 (Suppl 1) : 19 - 31
  • [3] Super-resolution microscopy in live-cell imaging
    Hedde, Per Niklas
    Gayda, Susan
    Nienhaus, Karin
    Nienhaus, G. Ulrich
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2011, 40 : 151 - 152
  • [4] Live-Cell Super-resolution Fluorescence Microscopy
    A. S. Mishin
    K. A. Lukyanov
    Biochemistry (Moscow), 2019, 84 : 19 - 31
  • [5] SRRF: Universal live-cell super-resolution microscopy
    Culley, Sian
    Tosheva, Kalina L.
    Pereira, Pedro Matos
    Henriques, Ricardo
    INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2018, 101 : 74 - 79
  • [6] A Trojan Horse for live-cell super-resolution microscopy
    Beliu, Gerti
    Sauer, Markus
    LIGHT-SCIENCE & APPLICATIONS, 2020, 9 (01)
  • [7] A Trojan Horse for live-cell super-resolution microscopy
    Gerti Beliu
    Markus Sauer
    Light: Science & Applications, 9
  • [8] A Microfluidic Platform for Correlative Live-Cell and Super-Resolution Microscopy
    Tam, Johnny
    Alan Cordier, Guillaume
    Balint, Stefan
    Sandoval Alvarez, Angel
    Steven Borbely, Joseph
    Lakadamyali, Melike
    PLOS ONE, 2014, 9 (12):
  • [9] Frontiers and development in live-cell super-resolution fluorescence microscopy
    Cheng Y.
    Li W.
    Jin T.
    Wu S.
    Zhang L.
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2023, 40 (01): : 180 - 184
  • [10] Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy
    Zhao, Weisong
    Zhao, Shiqun
    Li, Liuju
    Huang, Xiaoshuai
    Xing, Shijia
    Zhang, Yulin
    Qiu, Guohua
    Han, Zhenqian
    Shang, Yingxu
    Sun, De-En
    Shan, Chunyan
    Wu, Runlong
    Gu, Lusheng
    Zhang, Shuwen
    Chen, Riwang
    Xiao, Jian
    Mo, Yanquan
    Wang, Jianyong
    Ji, Wei
    Chen, Xing
    Ding, Baoquan
    Liu, Yanmei
    Mao, Heng
    Song, Bao-Liang
    Tan, Jiubin
    Liu, Jian
    Li, Haoyu
    Chen, Liangyi
    NATURE BIOTECHNOLOGY, 2022, 40 (04) : 606 - +