An Aubin continuity path for shrinking gradient Kahler-Ricci solitons

被引:0
|
作者
Cifarelli, Charles [1 ]
Conlon, Ronan J. [2 ]
Deruelle, Alix [3 ]
机构
[1] SUNT Stony Brook, Math Dept, Stony Brook, NY 11794 USA
[2] Univ Texas Dallas, Dept Math Sci, Richardson, TX 75080 USA
[3] Univ Paris Saclay, CNRS, Lab Math Orsay, F-91405 Orsay, France
来源
关键词
MANIFOLDS; GEOMETRY; METRICS;
D O I
10.1515/crelle-2024-0053
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a toric Kahler-Einstein Fano manifold. We show that any toric shrinking gradient Kahler-Ricci soliton on certain toric blowups of C x D satisfies a complex Monge-Ampere equation. We then set up an Aubin continuity path to solve this equation and show that it has a solution at the initial value of the path parameter. This we do by implementing another continuity method.
引用
收藏
页码:229 / 307
页数:79
相关论文
共 50 条
  • [31] Rotational symmetry of conical Kahler-Ricci solitons
    Chodosh, Otis
    Fong, Frederick Tsz-Ho
    MATHEMATISCHE ANNALEN, 2016, 364 (3-4) : 777 - 792
  • [32] Non-Kahler Ricci flow singularities modeled on Kahler-Ricci solitons
    Isenberg, James
    Knopf, Dan
    Sesum, Natasa
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2019, 15 (02) : 749 - 784
  • [33] On the vanishing of the holomorphic invariants for Kahler-Ricci solitons
    Saito, Shunsuke
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2014, 90 (03) : 57 - 59
  • [34] GENERALIZATIONS OF KAHLER-RICCI SOLITONS ON PROJECTIVE BUNDLES
    Maschler, Gideon
    Tonnesen-Friedman, Christina W.
    MATHEMATICA SCANDINAVICA, 2011, 108 (02) : 161 - 176
  • [35] Rigidity of κ-noncollapsed steady Kahler-Ricci solitons
    Deng, Yuxing
    Zhu, Xiaohua
    MATHEMATISCHE ANNALEN, 2020, 377 (1-2) : 847 - 861
  • [36] Compactness of Kahler-Ricci solitons on Fano manifolds
    Guo, Bin
    Phong, Duong H.
    Song, Jian
    Sturm, Jacob
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2022, 18 (01) : 305 - 316
  • [37] On the convergence of the modified Kahler-Ricci flow and solitons
    Phong, D. H.
    Song, Jian
    Sturm, Jacob
    Weinkove, Ben
    COMMENTARII MATHEMATICI HELVETICI, 2011, 86 (01) : 91 - 112
  • [38] GRADIENT KAHLER RICCI SOLITONS
    Bryant, Robert L.
    ASTERISQUE, 2008, (321) : 51 - 97
  • [39] Existence of gradient Kahler-Ricci expanding soliton
    Guan, Y.
    Zhongshan Daxue Xuebao/Acta Scientiarum Natralium Universitatis Sunyatseni, 2001, 40 (06): : 3 - 6
  • [40] Twisted and conical Kahler-Ricci solitons on Fano manifolds
    Jin, Xishen
    Liu, Jiawei
    Zhang, Xi
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (09) : 2396 - 2421