Let D be a toric Kahler-Einstein Fano manifold. We show that any toric shrinking gradient Kahler-Ricci soliton on certain toric blowups of C x D satisfies a complex Monge-Ampere equation. We then set up an Aubin continuity path to solve this equation and show that it has a solution at the initial value of the path parameter. This we do by implementing another continuity method.
机构:
Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R ChinaBeijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
Deng, Yuxing
Zhu, Xiaohua
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
Peking Univ, BICMR, Beijing 100871, Peoples R ChinaBeijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
机构:
Columbia Univ, Dept Math, New York, NY 10027 USA
Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USAColumbia Univ, Dept Math, New York, NY 10027 USA
Guo, Bin
Phong, Duong H.
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Math, New York, NY 10027 USAColumbia Univ, Dept Math, New York, NY 10027 USA
Phong, Duong H.
Song, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USAColumbia Univ, Dept Math, New York, NY 10027 USA
Song, Jian
Sturm, Jacob
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USAColumbia Univ, Dept Math, New York, NY 10027 USA