Let D be a toric Kahler-Einstein Fano manifold. We show that any toric shrinking gradient Kahler-Ricci soliton on certain toric blowups of C x D satisfies a complex Monge-Ampere equation. We then set up an Aubin continuity path to solve this equation and show that it has a solution at the initial value of the path parameter. This we do by implementing another continuity method.
机构:
Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, JapanUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
机构:
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R ChinaPeking Univ, Sch Math Sci, Beijing 100871, Peoples R China
Wang, Feng
Zhu, Xiaohua
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
Peking Univ, BICMR, Beijing 100871, Peoples R ChinaPeking Univ, Sch Math Sci, Beijing 100871, Peoples R China
机构:
Zhejiang Univ, Sch Math Sci, Zheda Rd 38, Hangzhou 310027, Zhejiang, Peoples R ChinaZhejiang Univ, Sch Math Sci, Zheda Rd 38, Hangzhou 310027, Zhejiang, Peoples R China
Jiang, Wenshuai
Wang, Feng
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Sch Math Sci, Zheda Rd 38, Hangzhou 310027, Zhejiang, Peoples R ChinaZhejiang Univ, Sch Math Sci, Zheda Rd 38, Hangzhou 310027, Zhejiang, Peoples R China
Wang, Feng
Zhu, Xiaohua
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
Peking Univ, BICMR, Beijing 100871, Peoples R ChinaZhejiang Univ, Sch Math Sci, Zheda Rd 38, Hangzhou 310027, Zhejiang, Peoples R China