An Aubin continuity path for shrinking gradient Kahler-Ricci solitons

被引:0
|
作者
Cifarelli, Charles [1 ]
Conlon, Ronan J. [2 ]
Deruelle, Alix [3 ]
机构
[1] SUNT Stony Brook, Math Dept, Stony Brook, NY 11794 USA
[2] Univ Texas Dallas, Dept Math Sci, Richardson, TX 75080 USA
[3] Univ Paris Saclay, CNRS, Lab Math Orsay, F-91405 Orsay, France
来源
关键词
MANIFOLDS; GEOMETRY; METRICS;
D O I
10.1515/crelle-2024-0053
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a toric Kahler-Einstein Fano manifold. We show that any toric shrinking gradient Kahler-Ricci soliton on certain toric blowups of C x D satisfies a complex Monge-Ampere equation. We then set up an Aubin continuity path to solve this equation and show that it has a solution at the initial value of the path parameter. This we do by implementing another continuity method.
引用
收藏
页码:229 / 307
页数:79
相关论文
共 50 条
  • [21] Gap theorems for Kahler-Ricci solitons
    Li, Haozhao
    ARCHIV DER MATHEMATIK, 2008, 91 (02) : 187 - 192
  • [22] ON CALABI EXTREMAL KAHLER-RICCI SOLITONS
    Calamai, Simone
    Petrecca, David
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (02) : 813 - 821
  • [23] ON COMPLEX DEFORMATIONS OF KAHLER-RICCI SOLITONS
    Pali, Nefton
    KODAI MATHEMATICAL JOURNAL, 2018, 41 (01) : 201 - 226
  • [24] Variational stability of Kahler-Ricci solitons
    Pali, Nefton
    ADVANCES IN MATHEMATICS, 2016, 290 : 15 - 35
  • [25] Uniqueness of Kahler-Ricci solitons on compact Kahler manifolds
    Tian, G
    Zhu, XH
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (11): : 991 - 995
  • [26] Classification of gradient Kahler-Ricci solitons with vanishing B-tensor
    Yang, Fei
    Zhang, Liangdi
    JOURNAL OF GEOMETRY AND PHYSICS, 2020, 147
  • [27] Kahler-Ricci solitons on toric Fano orbifolds
    Shi, Yalong
    Zhu, Xiaohua
    MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (3-4) : 1241 - 1251
  • [28] KAHLER-RICCI SOLITONS ON CERTAIN TORIC BUNDLES
    Nakagawa, Yasuhiro
    KYUSHU JOURNAL OF MATHEMATICS, 2019, 73 (02) : 379 - 390
  • [29] Kahler-Ricci solitons on homogeneous toric bundles
    Podesta, Fabio
    Spiro, Andrea
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 642 : 109 - 127
  • [30] EXPANDING KAHLER-RICCI SOLITONS COMING OUT OF KAHLER CONES
    Conlon, Ronan J.
    Deruelle, Alix
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2020, 115 (02) : 303 - 365