An Aubin continuity path for shrinking gradient Kahler-Ricci solitons

被引:0
|
作者
Cifarelli, Charles [1 ]
Conlon, Ronan J. [2 ]
Deruelle, Alix [3 ]
机构
[1] SUNT Stony Brook, Math Dept, Stony Brook, NY 11794 USA
[2] Univ Texas Dallas, Dept Math Sci, Richardson, TX 75080 USA
[3] Univ Paris Saclay, CNRS, Lab Math Orsay, F-91405 Orsay, France
来源
关键词
MANIFOLDS; GEOMETRY; METRICS;
D O I
10.1515/crelle-2024-0053
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a toric Kahler-Einstein Fano manifold. We show that any toric shrinking gradient Kahler-Ricci soliton on certain toric blowups of C x D satisfies a complex Monge-Ampere equation. We then set up an Aubin continuity path to solve this equation and show that it has a solution at the initial value of the path parameter. This we do by implementing another continuity method.
引用
收藏
页码:229 / 307
页数:79
相关论文
共 50 条