Uniqueness of shrinking gradient Kahler-Ricci solitons on non-compact toric manifolds

被引:4
|
作者
Cifarelli, Charles [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, 970 Evans Hall, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
SYMPLECTIC FORM; CO-HOMOLOGY; METRICS; CONVEXITY; GEOMETRY; INVARIANT;
D O I
10.1112/jlms.12673
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that, up to biholomorphism, there is at most one complete Tn$T<^>n$-invariant shrinking gradient Kahler-Ricci soliton on a non-compact toric manifold M. We also establish uniqueness without assuming Tn$T<^>n$-invariance if the Ricci curvature is bounded and if the soliton vector field lies in the Lie algebra t$\mathfrak {t}$ of Tn$T<^>n$. As an application, we show that, up to isometry, the unique complete shrinking gradient Kahler-Ricci soliton with bounded scalar curvature on CP1xC$\mathbb {C}\mathbb {P}<^>{1} \times \mathbb {C}$ is the standard product metric associated to the Fubini-Study metric on CP1$\mathbb {C}\mathbb {P}<^>{1}$ and the Euclidean metric on C$\mathbb {C}$.
引用
收藏
页码:3746 / 3791
页数:46
相关论文
共 50 条
  • [1] Uniqueness of Kahler-Ricci solitons on compact Kahler manifolds
    Tian, G
    Zhu, XH
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (11): : 991 - 995
  • [2] On Gradient Shrinking and Expanding Kahler-Ricci Solitons
    Zhang, Liangdi
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (01)
  • [3] COUPLED KAHLER-RICCI SOLITONS ON TORIC FANO MANIFOLDS
    Hultgren, Jakob
    ANALYSIS & PDE, 2019, 12 (08): : 2067 - 2094
  • [4] Global Kahler-Ricci flow on complete non-compact manifolds
    Ma, Li
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (03) : 1011 - 1019
  • [5] Uniqueness of Kahler-Ricci solitons
    Tian, G
    Zhu, XH
    ACTA MATHEMATICA, 2000, 184 (02) : 271 - 305
  • [6] Rotationally symmetric shrinking and expanding gradient Kahler-Ricci solitons
    Feldman, M
    Ilmanen, T
    Knopf, D
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2003, 65 (02) : 169 - 209
  • [7] An Aubin continuity path for shrinking gradient Kahler-Ricci solitons
    Cifarelli, Charles
    Conlon, Ronan J.
    Deruelle, Alix
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (815): : 229 - 307
  • [8] Kahler-Ricci solitons on toric manifolds with positive first Chern class
    Wang, XJ
    Zhu, XH
    ADVANCES IN MATHEMATICS, 2004, 188 (01) : 87 - 103
  • [9] Kahler-Ricci solitons on toric Fano orbifolds
    Shi, Yalong
    Zhu, Xiaohua
    MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (3-4) : 1241 - 1251
  • [10] KAHLER-RICCI SOLITONS ON CERTAIN TORIC BUNDLES
    Nakagawa, Yasuhiro
    KYUSHU JOURNAL OF MATHEMATICS, 2019, 73 (02) : 379 - 390