A Direct Method of Moving Planes for Logarithmic Schrodinger Operator

被引:0
|
作者
Zhang, Rong [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, HLM, Beijing, Peoples R China
[2] Univ Ghent, Dept Math Anal Log & Discrete Math, Ghent, Belgium
来源
基金
中国国家自然科学基金;
关键词
D O I
10.1007/978-3-031-41665-1_25
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the radial symmetry and monotonicity of nonnegative solutions to nonlinear equations involving the logarithmic Schrodinger operator (I-Delta)(log) corresponding to the logarithmic symbol (1+vertical bar xi vertical bar(2)), which is a singular integral operator given by (I - Delta)(log) u (x) = c(N) P.V. integral(N)(R) u (x) - u(y)/vertical bar x - y vertical bar(N) kappa(vertical bar x - y vertical bar) dy, where c(N) = pi(-N/2), kappa(r) = 2(1)- N/2 r N/2 K (N/2) (r), and K-nu is the modified Bessel function of the second kind with index nu. The proof hinges on a direct method of moving planes for the logarithmic Schrodinger operator. For a more detailed analysis and for the proofs of the announced results, we refer to (Zhang R, Kumar V, Ruzhansky M, A direct method of moving planes for logarithmic schrodinger operator. arXiv:2210.09811).
引用
收藏
页码:225 / 235
页数:11
相关论文
共 50 条
  • [21] A direct method of moving planes for the fractional p-Laplacian system with negative powers
    Qie, Minghui
    Lu, Zhongxue
    Zhang, Xin
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (02): : 344 - 358
  • [22] An Application of the Simplest Equations Method to Logarithmic Schrodinger Equation
    Jordanov, Ivan P.
    NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES, NTADES 2023, 2024, 449 : 169 - 178
  • [23] Classification of positive solutions to fractional order Hartree equations via a direct method of moving planes
    Dai, Wei
    Fang, Yanqin
    Qin, Guolin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (05) : 2044 - 2063
  • [24] Harnack Type Inequality: the Method of Moving Planes
    Yan Yan Li
    Communications in Mathematical Physics, 1999, 200 : 421 - 444
  • [25] Harnack type inequality: the method of moving planes
    Li, YY
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 200 (02) : 421 - 444
  • [26] ON THE LOGARITHMIC SCHRODINGER EQUATION
    D'Avenia, Pietro
    Montefusco, Eugenio
    Squassina, Marco
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (02)
  • [27] ON THE CONVERGENCE OF THE CRANK-NICOLSON METHOD FOR THE LOGARITHMIC SCHRODINGER EQUATION
    Paraschis, Panagiotis
    Zouraris, Georgios E.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (01): : 245 - 261
  • [28] Asymptotic method of moving planes for fractional parabolic equations
    Chen, Wenxiong
    Wang, Pengyan
    Niu, Yahui
    Hu, Yunyun
    ADVANCES IN MATHEMATICS, 2021, 377
  • [29] Application of the method of moving planes to conformally invariant equations
    Pengfei Guan
    Chang-Shou Lin
    Guofang Wang
    Mathematische Zeitschrift, 2004, 247 : 1 - 19
  • [30] The Method of Moving Planes for Integral Equation in an Extremal Case
    Wang Ying
    Wang Jian
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2016, 29 (03): : 246 - 254