A Direct Method of Moving Planes for Logarithmic Schrodinger Operator

被引:0
|
作者
Zhang, Rong [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, HLM, Beijing, Peoples R China
[2] Univ Ghent, Dept Math Anal Log & Discrete Math, Ghent, Belgium
来源
基金
中国国家自然科学基金;
关键词
D O I
10.1007/978-3-031-41665-1_25
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the radial symmetry and monotonicity of nonnegative solutions to nonlinear equations involving the logarithmic Schrodinger operator (I-Delta)(log) corresponding to the logarithmic symbol (1+vertical bar xi vertical bar(2)), which is a singular integral operator given by (I - Delta)(log) u (x) = c(N) P.V. integral(N)(R) u (x) - u(y)/vertical bar x - y vertical bar(N) kappa(vertical bar x - y vertical bar) dy, where c(N) = pi(-N/2), kappa(r) = 2(1)- N/2 r N/2 K (N/2) (r), and K-nu is the modified Bessel function of the second kind with index nu. The proof hinges on a direct method of moving planes for the logarithmic Schrodinger operator. For a more detailed analysis and for the proofs of the announced results, we refer to (Zhang R, Kumar V, Ruzhansky M, A direct method of moving planes for logarithmic schrodinger operator. arXiv:2210.09811).
引用
收藏
页码:225 / 235
页数:11
相关论文
共 50 条