A Direct Method of Moving Planes to Fractional Power SubLaplace Equations on the Heisenberg Group

被引:1
|
作者
Wang, Xin-jing [1 ,2 ]
Niu, Peng-cheng [2 ]
机构
[1] Huanghuai Univ, Sch Math & Stat, Zhumadian 463000, Henan, Peoples R China
[2] Northwestern Polytech Univ, Dept Appl Math, Xian 710129, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Heisenberg group; fractional power subLaplace equation; the direct method of moving planes; maximum principle; SEMILINEAR EQUATIONS; LIOUVILLE THEOREMS; HARNACK INEQUALITY; CLASSIFICATION; SYMMETRY;
D O I
10.1007/s10255-021-1016-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give the direct method of moving planes for solutions to the conformally invariant fractional power subLaplace equation on the Heisenberg group. The method is based on four maximum principles derived here. Then symmetry and nonexistence of positive cylindrical solutions are proved.
引用
收藏
页码:364 / 379
页数:16
相关论文
共 50 条
  • [1] A Direct Method of Moving Planes to Fractional Power SubLaplace Equations on the Heisenberg Group
    Xin-jing Wang
    Peng-cheng Niu
    Acta Mathematicae Applicatae Sinica, English Series, 2021, 37 : 364 - 379
  • [2] A Direct Method of Moving Planes to Fractional Power Sub Laplace Equations on the Heisenberg Group
    Xin-jing WANG
    Peng-cheng NIU
    ActaMathematicaeApplicataeSinica, 2021, 37 (02) : 364 - 379
  • [3] Properties for Nonlinear Fractional SubLaplace Equations on the Heisenberg Group
    Wang Xinjing
    Niu Pengcheng
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2019, 32 (01): : 66 - 76
  • [4] Properties of solutions to fractional p-subLaplace equations on the Heisenberg group
    Xinjing Wang
    Guangwei Du
    Boundary Value Problems, 2020
  • [5] Direct Method of Moving Planes for Tempered Fractional Laplacian Equations
    Wang, Lu
    Liu, Baiyu
    FRONTIERS OF MATHEMATICS, 2024, 19 (05): : 797 - 809
  • [6] A DIRECT METHOD OF MOVING PLANES FOR FRACTIONAL LAPLACIAN EQUATIONS IN THE UNIT BALL
    Dou, Meixia
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (05) : 1797 - 1807
  • [7] A direct method of moving planes for the fractional Laplacian
    Chen, Wenxiong
    Li, Congming
    Li, Yan
    ADVANCES IN MATHEMATICS, 2017, 308 : 404 - 437
  • [8] Properties of solutions to fractionalp-subLaplace equations on the Heisenberg group
    Wang, Xinjing
    Du, Guangwei
    BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
  • [9] Asymptotic method of moving planes for fractional parabolic equations
    Chen, Wenxiong
    Wang, Pengyan
    Niu, Yahui
    Hu, Yunyun
    ADVANCES IN MATHEMATICS, 2021, 377
  • [10] A DIRECT METHOD OF MOVING PLANES FOR THE SYSTEM OF THE FRACTIONAL LAPLACIAN
    Cheng, Chunxia
    Lu, Zhongxue
    Lu, Yingshu
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 290 (02) : 301 - 320