A Direct Method of Moving Planes to Fractional Power SubLaplace Equations on the Heisenberg Group

被引:1
|
作者
Wang, Xin-jing [1 ,2 ]
Niu, Peng-cheng [2 ]
机构
[1] Huanghuai Univ, Sch Math & Stat, Zhumadian 463000, Henan, Peoples R China
[2] Northwestern Polytech Univ, Dept Appl Math, Xian 710129, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Heisenberg group; fractional power subLaplace equation; the direct method of moving planes; maximum principle; SEMILINEAR EQUATIONS; LIOUVILLE THEOREMS; HARNACK INEQUALITY; CLASSIFICATION; SYMMETRY;
D O I
10.1007/s10255-021-1016-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give the direct method of moving planes for solutions to the conformally invariant fractional power subLaplace equation on the Heisenberg group. The method is based on four maximum principles derived here. Then symmetry and nonexistence of positive cylindrical solutions are proved.
引用
收藏
页码:364 / 379
页数:16
相关论文
共 50 条
  • [21] Application of the method of moving planes to conformally invariant equations
    Pengfei Guan
    Chang-Shou Lin
    Guofang Wang
    Mathematische Zeitschrift, 2004, 247 : 1 - 19
  • [22] A Direct Method of Moving Planes for Logarithmic Schrodinger Operator
    Zhang, Rong
    EXTENDED ABSTRACTS MWCAPDE 2023, 2024, 1 : 225 - 235
  • [23] A direct method of moving planes for logarithmic Schrodinger operator
    Zhang, Rong
    Kumar, Vishvesh
    Ruzhansky, Michael
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2024, 43 (3-4): : 287 - 297
  • [24] On the method of moving planes and symmetry of solutions of semilinear elliptic equations
    Chen, CC
    Lee, MD
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (10) : 1697 - 1707
  • [25] Holder Continuity and Boundedness Estimates for Nonlinear Fractional Equations in the Heisenberg Group
    Manfredini, Maria
    Palatucci, Giampiero
    Piccinini, Mirco
    Polidoro, Sergio
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (03)
  • [26] A DIRECT METHOD OF MOVING PLANES FOR A FULLY NONLINEAR NONLOCAL SYSTEM
    Wang, Pengyan
    Niu, Pengcheng
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (05) : 1707 - 1718
  • [27] An Application of the Moving Frame Method to Integral Geometry in the Heisenberg Group
    Chiu, Hung-Lin
    Huang, Yen-Chang
    Lai, Sin-Hua
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2017, 13
  • [28] A stability result of a fractional heat equation and time fractional diffusion equations governed by fractional fluxes in the Heisenberg group
    E. J. Hurtado
    A. P. Salvatierra
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 3869 - 3889
  • [29] A stability result of a fractional heat equation and time fractional diffusion equations governed by fractional fluxes in the Heisenberg group
    Hurtado, E. J.
    Salvatierra, A. P.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (08) : 3869 - 3889
  • [30] Hölder Continuity and Boundedness Estimates for Nonlinear Fractional Equations in the Heisenberg Group
    Maria Manfredini
    Giampiero Palatucci
    Mirco Piccinini
    Sergio Polidoro
    The Journal of Geometric Analysis, 2023, 33