A Direct Method of Moving Planes for Logarithmic Schrodinger Operator

被引:0
|
作者
Zhang, Rong [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, HLM, Beijing, Peoples R China
[2] Univ Ghent, Dept Math Anal Log & Discrete Math, Ghent, Belgium
来源
基金
中国国家自然科学基金;
关键词
D O I
10.1007/978-3-031-41665-1_25
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the radial symmetry and monotonicity of nonnegative solutions to nonlinear equations involving the logarithmic Schrodinger operator (I-Delta)(log) corresponding to the logarithmic symbol (1+vertical bar xi vertical bar(2)), which is a singular integral operator given by (I - Delta)(log) u (x) = c(N) P.V. integral(N)(R) u (x) - u(y)/vertical bar x - y vertical bar(N) kappa(vertical bar x - y vertical bar) dy, where c(N) = pi(-N/2), kappa(r) = 2(1)- N/2 r N/2 K (N/2) (r), and K-nu is the modified Bessel function of the second kind with index nu. The proof hinges on a direct method of moving planes for the logarithmic Schrodinger operator. For a more detailed analysis and for the proofs of the announced results, we refer to (Zhang R, Kumar V, Ruzhansky M, A direct method of moving planes for logarithmic schrodinger operator. arXiv:2210.09811).
引用
收藏
页码:225 / 235
页数:11
相关论文
共 50 条
  • [1] A direct method of moving planes for logarithmic Schrodinger operator
    Zhang, Rong
    Kumar, Vishvesh
    Ruzhansky, Michael
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2024, 43 (3-4): : 287 - 297
  • [2] A direct method of moving planes for the Logarithmic Laplacian
    Zhang, Lihong
    Nie, Xiaofeng
    APPLIED MATHEMATICS LETTERS, 2021, 118
  • [3] DIRECT METHOD OF MOVING PLANES FOR LOGARITHMIC LAPLACIAN SYSTEM IN BOUNDED DOMAINS
    Liu, Baiyu
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (10) : 5339 - 5349
  • [4] A direct method of moving planes for the fractional Laplacian
    Chen, Wenxiong
    Li, Congming
    Li, Yan
    ADVANCES IN MATHEMATICS, 2017, 308 : 404 - 437
  • [5] A DIRECT METHOD OF MOVING PLANES FOR THE SYSTEM OF THE FRACTIONAL LAPLACIAN
    Cheng, Chunxia
    Lu, Zhongxue
    Lu, Yingshu
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 290 (02) : 301 - 320
  • [6] The logarithmic Schrodinger operator and associated Dirichlet problems
    Feulefack, Pierre Aime
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 517 (02)
  • [7] A DIRECT METHOD OF MOVING PLANES FOR A FULLY NONLINEAR NONLOCAL SYSTEM
    Wang, Pengyan
    Niu, Pengcheng
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (05) : 1707 - 1718
  • [8] Direct Method of Moving Planes for Tempered Fractional Laplacian Equations
    Wang, Lu
    Liu, Baiyu
    FRONTIERS OF MATHEMATICS, 2024, 19 (05): : 797 - 809
  • [9] The fractional logarithmic Schrodinger operator: properties and functional spaces
    Feulefack, Pierre Aime
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2024, 15 (03)
  • [10] A DIRECT METHOD OF MOVING PLANES FOR FULLY NONLINEAR NONLOCAL OPERATORS AND APPLICATIONS
    Guo, Yuxia
    Peng, Shaolong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (06): : 1871 - 1897