A Direct Method of Moving Planes for Logarithmic Schrodinger Operator

被引:0
|
作者
Zhang, Rong [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, HLM, Beijing, Peoples R China
[2] Univ Ghent, Dept Math Anal Log & Discrete Math, Ghent, Belgium
来源
基金
中国国家自然科学基金;
关键词
D O I
10.1007/978-3-031-41665-1_25
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the radial symmetry and monotonicity of nonnegative solutions to nonlinear equations involving the logarithmic Schrodinger operator (I-Delta)(log) corresponding to the logarithmic symbol (1+vertical bar xi vertical bar(2)), which is a singular integral operator given by (I - Delta)(log) u (x) = c(N) P.V. integral(N)(R) u (x) - u(y)/vertical bar x - y vertical bar(N) kappa(vertical bar x - y vertical bar) dy, where c(N) = pi(-N/2), kappa(r) = 2(1)- N/2 r N/2 K (N/2) (r), and K-nu is the modified Bessel function of the second kind with index nu. The proof hinges on a direct method of moving planes for the logarithmic Schrodinger operator. For a more detailed analysis and for the proofs of the announced results, we refer to (Zhang R, Kumar V, Ruzhansky M, A direct method of moving planes for logarithmic schrodinger operator. arXiv:2210.09811).
引用
收藏
页码:225 / 235
页数:11
相关论文
共 50 条
  • [41] ERROR ESTIMATES OF A REGULARIZED FINITE DIFFERENCE METHOD FOR THE LOGARITHMIC SCHRODINGER EQUATION
    Bat, Weizhu
    Carles, Remi
    Su, Chunmei
    Tang, Qinglin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (02) : 657 - 680
  • [42] On the direct and inverse transmission eigenvalue problems for the Schrodinger operator on the half line
    Xu, Xiao-Chuan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (15) : 8434 - 8448
  • [43] On the method of moving planes and symmetry of solutions of semilinear elliptic equations
    Chen, CC
    Lee, MD
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (10) : 1697 - 1707
  • [44] Logarithmic moving averages
    Bingham, N. H.
    Gashi, Bujar
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 421 (02) : 1790 - 1802
  • [45] A Deep Learning Method for Computing Eigenvalues of the Fractional Schrodinger Operator
    Guo Yixiao
    Ming Pingbing
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2024, 37 (02) : 391 - 412
  • [46] Eigenvalues computation by the generalized spectrum method of Schrodinger's operator
    Khellaf, Ammar
    Guebbai, Hamza
    Lemita, Samir
    Aissaoui, Mohamed Zine
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (05): : 5965 - 5980
  • [47] Intertwining operator method and supersymmetry for effective mass Schrodinger equations
    Suzko, A. A.
    Schulze-Halberg, A.
    PHYSICS LETTERS A, 2008, 372 (37) : 5865 - 5871
  • [48] A parallel split operator method for the time dependent schrodinger equation
    Hansen, JP
    Matthey, T
    Sorevik, T
    RECENT ADVANCES IN PARALLEL VIRTUAL MACHINE AND MESSAGE PASSING INTERFACE, 2003, 2840 : 503 - 510
  • [49] COMMENT ON THE OPERATOR METHOD AND PERTURBATIONAL SOLUTION OF THE SCHRODINGER-EQUATION
    FERNANDEZ, FM
    CASTRO, EA
    PHYSICS LETTERS A, 1982, 91 (07) : 339 - 340
  • [50] Finite element method for an eigenvalue optimization problem of the Schrodinger operator
    Guo, Shuangbing
    Lu, Xiliang
    Zhang, Zhiyue
    AIMS MATHEMATICS, 2022, 7 (04): : 5049 - 5071