ON THE CONVERGENCE OF THE CRANK-NICOLSON METHOD FOR THE LOGARITHMIC SCHRODINGER EQUATION

被引:4
|
作者
Paraschis, Panagiotis [1 ]
Zouraris, Georgios E. [2 ]
机构
[1] Natl Tech Univ Athens, Sch Appl Math & Phys Sci, GR-15780 Zografos, Greece
[2] Univ Crete, Dept Math & Appl Math, Div Appl Math Differential Equat & Numer Anal, Voutes Campus, GR-70013 Iraklion, Crete, Greece
来源
关键词
Logarithmic Schrodinger equation; Dirichlet boundary conditions; finite differences; Crank-Nicolson time stepping; error estimates;
D O I
10.3934/dcdsb.2022074
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an initial and Dirichlet boundary value problem for a logarithmic Schrodinger equation over a two dimensional rectangular domain. We construct approximations of the solution to the problem using a standard second order finite difference method for space discretization and the Crank-Nicolson method for time discretization, with or without regularizing the logarithmic term. We develop a convergence analysis yielding a new almost second order a priori error estimates in the discrete L-t(infinity) (L-x(2)) norm, and we show results from numerical experiments exposing the efficiency of the method proposed. It is the first time in the literature where an error estimate for a numerical method applied to the logarithmic Schrodinger equation is provided, without regularizing its nonlinear term.
引用
收藏
页码:245 / 261
页数:17
相关论文
共 50 条
  • [1] Numerical Solution of Schrodinger Equation by Crank-Nicolson Method
    Khan, Amin
    Ahsan, Muhammad
    Bonyah, Ebenezer
    Jan, Rashid
    Nisar, Muhammad
    Abdel-Aty, Abdel-Haleem
    Yahia, Ibrahim S.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [2] Numerical Solution of Schrodinger Equation by Crank-Nicolson Method
    Khan, Amin
    Ahsan, Muhammad
    Bonyah, Ebenezer
    Jan, Rashid
    Nisar, Muhammad
    Abdel-Aty, Abdel-Haleem
    Yahia, Ibrahim S.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [3] Optimal Convergence of the Newton Iterative Crank-Nicolson Finite Element Method for the Nonlinear Schrodinger Equation
    Hu, Hanzhang
    Li, Buyang
    Zou, Jun
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2022, 22 (03) : 591 - 612
  • [4] Crank-Nicolson Implicit Method For The Nonlinear Schrodinger Equation With Variable Coefficient
    Choy, Yaan Yee
    Tan, Wool Nee
    Tay, Kim Gaik
    Ong, Chee Tong
    PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 76 - 82
  • [5] Multisymplecticity of Crank-Nicolson scheme for the nonlinear Schrodinger equation
    Chen, JB
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2002, 71 (09) : 2348 - 2349
  • [6] A NOTE ON THE CONVERGENCE OF A CRANK-NICOLSON SCHEME FOR THE KDV EQUATION
    Dutta, Rajib
    Risebro, Nils Henrik
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2016, 13 (05) : 657 - 675
  • [7] Invariantization of the Crank-Nicolson method for Burgers' equation
    Kim, Pilwon
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (02) : 243 - 254
  • [8] Derivation of the multisymplectic Crank-Nicolson scheme for the nonlinear Schrodinger equation
    Cai, Wenjun
    Wang, Yushun
    Song, Yongzhong
    COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (10) : 2403 - 2411
  • [9] Crank-Nicolson Scheme for Solving the Modified Nonlinear Schrodinger Equation
    Alanazi, A. A.
    Alamri, Sultan Z.
    Shafie, S.
    Puzi, Shazirawati Mohd
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2021, 31 (08) : 2789 - 2817
  • [10] CRANK-NICOLSON GALERKIN APPROXIMATIONS FOR LOGARITHMIC KLEIN-GORDON EQUATION
    Chen, Fang
    Li, Meng
    Zhao, Yanmin
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2025, 43 (03):