ON THE CONVERGENCE OF THE CRANK-NICOLSON METHOD FOR THE LOGARITHMIC SCHRODINGER EQUATION

被引:4
|
作者
Paraschis, Panagiotis [1 ]
Zouraris, Georgios E. [2 ]
机构
[1] Natl Tech Univ Athens, Sch Appl Math & Phys Sci, GR-15780 Zografos, Greece
[2] Univ Crete, Dept Math & Appl Math, Div Appl Math Differential Equat & Numer Anal, Voutes Campus, GR-70013 Iraklion, Crete, Greece
来源
关键词
Logarithmic Schrodinger equation; Dirichlet boundary conditions; finite differences; Crank-Nicolson time stepping; error estimates;
D O I
10.3934/dcdsb.2022074
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an initial and Dirichlet boundary value problem for a logarithmic Schrodinger equation over a two dimensional rectangular domain. We construct approximations of the solution to the problem using a standard second order finite difference method for space discretization and the Crank-Nicolson method for time discretization, with or without regularizing the logarithmic term. We develop a convergence analysis yielding a new almost second order a priori error estimates in the discrete L-t(infinity) (L-x(2)) norm, and we show results from numerical experiments exposing the efficiency of the method proposed. It is the first time in the literature where an error estimate for a numerical method applied to the logarithmic Schrodinger equation is provided, without regularizing its nonlinear term.
引用
收藏
页码:245 / 261
页数:17
相关论文
共 50 条
  • [21] A numerical method based on Crank-Nicolson scheme for Burgers' equation
    Kadalbajoo, Mohan. K.
    Awasthi, A.
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (02) : 1430 - 1442
  • [22] Numerical Solution of Schrödinger Equation by Crank-Nicolson Method
    Khan, Amin
    Ahsan, Muhammad
    Bonyah, Ebenezer
    Jan, Rashid
    Nisar, Muhammad
    Abdel-Aty, Abdel-Haleem
    Yahia, Ibrahim S.
    Mathematical Problems in Engineering, 2022, 2022
  • [23] APPLICATION OF CRANK-NICOLSON METHOD TO A RANDOM COMPONENT HEAT EQUATION
    Anac, Halil
    Merdan, Mehmet
    Kesemen, Tulay
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2020, 38 (01): : 475 - 480
  • [24] Local Crank-Nicolson Method for Solving the Nonlinear Diffusion Equation
    Abduwali, Abdurishit
    Kohno, Toshiyuki
    Niki, Hiroshi
    INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2008, 11 (02): : 165 - 169
  • [25] Two-Grid Crank-Nicolson FiniteVolume Element Method for the Time-Dependent Schrodinger Equation
    Chen, Chuanjun
    Lou, Yuzhi
    Zhang, Tong
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2022, 14 (06) : 1357 - 1380
  • [26] Convergence of the Crank-Nicolson extrapolation scheme for the Korteweg-de Vries equation
    Wang, Pengfei
    Huang, Pengzhan
    APPLIED NUMERICAL MATHEMATICS, 2019, 143 : 88 - 96
  • [27] ALTERNATING BAND CRANK-NICOLSON METHOD FOR
    陈劲
    张宝琳
    Applied Mathematics:A Journal of Chinese Universities, 1993, (02) : 150 - 162
  • [28] An analysis of the Crank-Nicolson method for subdiffusion
    Jin, Bangti
    Li, Buyang
    Zhou, Zhi
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (01) : 518 - 541
  • [29] A New Error Analysis of Crank-Nicolson Galerkin FEMs for a Generalized Nonlinear Schrodinger Equation
    Wang, Jilu
    JOURNAL OF SCIENTIFIC COMPUTING, 2014, 60 (02) : 390 - 407
  • [30] Modified Crank-Nicolson Difference Schemes for Nonlocal Boundary Value Problem for the Schrodinger Equation
    Ashyralyev, Allaberen
    Sirma, Ali
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2009, 2009