SCIntRuler: guiding the integration of multiple single-cell RNA-seq datasets with a novel statistical metric

被引:0
|
作者
Lyu, Yue [1 ,2 ]
Lin, Steven H. [3 ]
Wu, Hao [4 ,5 ]
Li, Ziyi [1 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Biostat, 7007 Bertner Ave, Houston, TX 77030 USA
[2] Univ Texas Hlth Sci Ctr Houston, Dept Biostat & Data Sci, Houston, TX 77030 USA
[3] Univ Texas MD Anderson Canc Ctr, Dept Thorac Radiat Oncol, Div Radiat Oncol, Houston, TX 77030 USA
[4] Shenzhen Univ Adv Technol, Fac Comp Sci & Control Engn, Shenzhen 518055, Guangdong, Peoples R China
[5] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Guangdong, Peoples R China
基金
美国国家卫生研究院;
关键词
ATLAS;
D O I
10.1093/bioinformatics/btae537
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation The growing number of single-cell RNA-seq (scRNA-seq) studies highlights the potential benefits of integrating multiple datasets, such as augmenting sample sizes and enhancing analytical robustness. Inherent diversity and batch discrepancies within samples or across studies continue to pose significant challenges for computational analyses. Questions persist in practice, lacking definitive answers: Should we use a specific integration method or opt for simply merging the datasets during joint analysis? Among all the existing data integration methods, which one is more suitable in specific scenarios?Result To fill the gap, we introduce SCIntRuler, a novel statistical metric for guiding the integration of multiple scRNA-seq datasets. SCIntRuler helps researchers make informed decisions regarding the necessity of data integration and the selection of an appropriate integration method. Our simulations and real data applications demonstrate that SCIntRuler streamlines decision-making processes and facilitates the analysis of diverse scRNA-seq datasets under varying contexts, thereby alleviating the complexities associated with the integration of heterogeneous scRNA-seq datasets.Availability and implementation The implementation of our method is available on CRAN as an open-source R package with a user-friendly manual available: https://cloud.r-project.org/web/packages/SCIntRuler/index.html
引用
收藏
页数:9
相关论文
共 50 条
  • [21] PRECISION AND ACCURACY IN SINGLE-CELL RNA-SEQ
    Dai, Rujia
    Zhang, Ming
    Chu, Tianyao
    Kopp, Richard
    Zhang, Chunling
    Liu, Kefu
    Wang, Yue
    Wang, Xusheng
    Chen, Chao
    Liu, Chunyu
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2024, 87 : 21 - 21
  • [22] Single-cell RNA-seq—now with protein
    Vesna Todorovic
    Nature Methods, 2017, 14 : 1028 - 1029
  • [23] scMerge leverages factor analysis, stable expression, and pseudoreplication to merge multiple single-cell RNA-seq datasets
    Lin, Yingxin
    Ghazanfar, Shila
    Wang, Kevin Y. X.
    Gagnon-Bartsch, Johann A.
    Lo, Kitty K.
    Su, Xianbin
    Han, Ze-Guang
    Ormerod, John T.
    Speed, Terence P.
    Yang, Pengyi
    Yang, Jean Yee Hwa
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (20) : 9775 - 9784
  • [24] Bgee in 2024: focus on curated single-cell RNA-seq datasets, and query tools
    Bastian, Frederic B.
    Cammarata, Alessandro Brandulas
    Carsanaro, Sara
    Detering, Harald
    Huang, Wan-Ting
    Joye, Sagane
    Niknejad, Anne
    Nyamari, Marion
    de Farias, Tarcisio Mendes
    Moretti, Sebastien
    Tzivanopoulou, Marianna
    Wollbrett, Julien
    Robinson-Rechavi, Marc
    NUCLEIC ACIDS RESEARCH, 2024, 53 (D1) : D878 - D885
  • [25] scBridge embraces cell heterogeneity in single-cell RNA-seq and ATAC-seq data integration
    Yunfan Li
    Dan Zhang
    Mouxing Yang
    Dezhong Peng
    Jun Yu
    Yu Liu
    Jiancheng Lv
    Lu Chen
    Xi Peng
    Nature Communications, 14
  • [26] scBridge embraces cell heterogeneity in single-cell RNA-seq and ATAC-seq data integration
    Li, Yunfan
    Zhang, Dan
    Yang, Mouxing
    Peng, Dezhong
    Yu, Jun
    Liu, Yu
    Lv, Jiancheng
    Chen, Lu
    Peng, Xi
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [27] Integrated Analysis of Single-Cell RNA-Seq and Bulk RNA-Seq Combined with Multiple Machine Learning Identified a Novel Immune Signature in Diabetic
    Peng, Yue-Ling
    Zhang, Yan
    Pang, Lin
    Dong, Ya-Fang
    Li, Mu -Ye
    Liao, Hui
    Li, Rong-Shan
    DIABETES METABOLIC SYNDROME AND OBESITY, 2023, 16 : 1669 - 1684
  • [28] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Peng, Tao
    Zhu, Qin
    Yin, Penghang
    Tan, Kai
    GENOME BIOLOGY, 2019, 20 (1)
  • [29] A statistical approach for identifying differential distributions in single-cell RNA-seq experiments
    Keegan D. Korthauer
    Li-Fang Chu
    Michael A. Newton
    Yuan Li
    James Thomson
    Ron Stewart
    Christina Kendziorski
    Genome Biology, 17
  • [30] A statistical approach for identifying differential distributions in single-cell RNA-seq experiments
    Korthauer, Keegan D.
    Chu, Li-Fang
    Newton, Michael A.
    Li, Yuan
    Thomson, James
    Stewart, Ron
    Kendziorski, Christina
    GENOME BIOLOGY, 2016, 17