SCIntRuler: guiding the integration of multiple single-cell RNA-seq datasets with a novel statistical metric

被引:0
|
作者
Lyu, Yue [1 ,2 ]
Lin, Steven H. [3 ]
Wu, Hao [4 ,5 ]
Li, Ziyi [1 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Biostat, 7007 Bertner Ave, Houston, TX 77030 USA
[2] Univ Texas Hlth Sci Ctr Houston, Dept Biostat & Data Sci, Houston, TX 77030 USA
[3] Univ Texas MD Anderson Canc Ctr, Dept Thorac Radiat Oncol, Div Radiat Oncol, Houston, TX 77030 USA
[4] Shenzhen Univ Adv Technol, Fac Comp Sci & Control Engn, Shenzhen 518055, Guangdong, Peoples R China
[5] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Guangdong, Peoples R China
基金
美国国家卫生研究院;
关键词
ATLAS;
D O I
10.1093/bioinformatics/btae537
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation The growing number of single-cell RNA-seq (scRNA-seq) studies highlights the potential benefits of integrating multiple datasets, such as augmenting sample sizes and enhancing analytical robustness. Inherent diversity and batch discrepancies within samples or across studies continue to pose significant challenges for computational analyses. Questions persist in practice, lacking definitive answers: Should we use a specific integration method or opt for simply merging the datasets during joint analysis? Among all the existing data integration methods, which one is more suitable in specific scenarios?Result To fill the gap, we introduce SCIntRuler, a novel statistical metric for guiding the integration of multiple scRNA-seq datasets. SCIntRuler helps researchers make informed decisions regarding the necessity of data integration and the selection of an appropriate integration method. Our simulations and real data applications demonstrate that SCIntRuler streamlines decision-making processes and facilitates the analysis of diverse scRNA-seq datasets under varying contexts, thereby alleviating the complexities associated with the integration of heterogeneous scRNA-seq datasets.Availability and implementation The implementation of our method is available on CRAN as an open-source R package with a user-friendly manual available: https://cloud.r-project.org/web/packages/SCIntRuler/index.html
引用
收藏
页数:9
相关论文
共 50 条
  • [41] A SMARTer solution to stranded single-cell RNA-seq
    Gandlur, S.
    Pesant, M.
    Bolduc, N.
    Lee, S.
    Hardy, C.
    Das, A.
    Bostick, M.
    Farmer, A.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 1716 - 1717
  • [42] Practical Compass of Single-Cell RNA-Seq Analysis
    Okada, Hiroyuki
    Chung, Ung-il
    Hojo, Hironori
    CURRENT OSTEOPOROSIS REPORTS, 2024, 22 (05) : 433 - 440
  • [43] Embracing the dropouts in single-cell RNA-seq analysis
    Peng Qiu
    Nature Communications, 11
  • [44] Guidelines for reporting single-cell RNA-seq experiments
    Anja Füllgrabe
    Nancy George
    Matthew Green
    Parisa Nejad
    Bruce Aronow
    Silvie Korena Fexova
    Clay Fischer
    Mallory Ann Freeberg
    Laura Huerta
    Norman Morrison
    Richard H. Scheuermann
    Deanne Taylor
    Nicole Vasilevsky
    Laura Clarke
    Nils Gehlenborg
    Jim Kent
    John Marioni
    Sarah Teichmann
    Alvis Brazma
    Irene Papatheodorou
    Nature Biotechnology, 2020, 38 : 1384 - 1386
  • [45] Single-cell RNA-Seq unveils tumor microenvironment
    Lee, Hae-Ock
    Park, Woong-Yang
    BMB REPORTS, 2017, 50 (06) : 283 - 284
  • [46] From single-cell RNA-seq to transcriptional regulation
    Gioele La Manno
    Nature Biotechnology, 2019, 37 : 1421 - 1422
  • [47] How deep is enough in single-cell RNA-seq?
    Aaron M Streets
    Yanyi Huang
    Nature Biotechnology, 2014, 32 : 1005 - 1006
  • [48] How deep is enough in single-cell RNA-seq?
    Streets, Aaron M.
    Huang, Yanyi
    NATURE BIOTECHNOLOGY, 2014, 32 (10) : 1005 - 1006
  • [49] Single-cell RNA-seq keeps cells alive
    Eleni Kotsiliti
    Nature Biotechnology, 2022, 40 : 1432 - 1432
  • [50] Comparison of transformations for single-cell RNA-seq data
    Constantin Ahlmann-Eltze
    Wolfgang Huber
    Nature Methods, 2023, 20 : 665 - 672