SCIntRuler: guiding the integration of multiple single-cell RNA-seq datasets with a novel statistical metric

被引:0
|
作者
Lyu, Yue [1 ,2 ]
Lin, Steven H. [3 ]
Wu, Hao [4 ,5 ]
Li, Ziyi [1 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Biostat, 7007 Bertner Ave, Houston, TX 77030 USA
[2] Univ Texas Hlth Sci Ctr Houston, Dept Biostat & Data Sci, Houston, TX 77030 USA
[3] Univ Texas MD Anderson Canc Ctr, Dept Thorac Radiat Oncol, Div Radiat Oncol, Houston, TX 77030 USA
[4] Shenzhen Univ Adv Technol, Fac Comp Sci & Control Engn, Shenzhen 518055, Guangdong, Peoples R China
[5] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Guangdong, Peoples R China
基金
美国国家卫生研究院;
关键词
ATLAS;
D O I
10.1093/bioinformatics/btae537
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation The growing number of single-cell RNA-seq (scRNA-seq) studies highlights the potential benefits of integrating multiple datasets, such as augmenting sample sizes and enhancing analytical robustness. Inherent diversity and batch discrepancies within samples or across studies continue to pose significant challenges for computational analyses. Questions persist in practice, lacking definitive answers: Should we use a specific integration method or opt for simply merging the datasets during joint analysis? Among all the existing data integration methods, which one is more suitable in specific scenarios?Result To fill the gap, we introduce SCIntRuler, a novel statistical metric for guiding the integration of multiple scRNA-seq datasets. SCIntRuler helps researchers make informed decisions regarding the necessity of data integration and the selection of an appropriate integration method. Our simulations and real data applications demonstrate that SCIntRuler streamlines decision-making processes and facilitates the analysis of diverse scRNA-seq datasets under varying contexts, thereby alleviating the complexities associated with the integration of heterogeneous scRNA-seq datasets.Availability and implementation The implementation of our method is available on CRAN as an open-source R package with a user-friendly manual available: https://cloud.r-project.org/web/packages/SCIntRuler/index.html
引用
收藏
页数:9
相关论文
共 50 条
  • [31] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Tao Peng
    Qin Zhu
    Penghang Yin
    Kai Tan
    Genome Biology, 20
  • [32] SINGLE-CELL ANALYSIS From single-cell RNA-seq to transcriptional regulation
    La Manno, Gioele
    NATURE BIOTECHNOLOGY, 2019, 37 (12) : 1421 - 1422
  • [33] Decontamination of ambient RNA in single-cell RNA-seq with DecontX
    Shiyi Yang
    Sean E. Corbett
    Yusuke Koga
    Zhe Wang
    W Evan Johnson
    Masanao Yajima
    Joshua D. Campbell
    Genome Biology, 21
  • [34] Decontamination of ambient RNA in single-cell RNA-seq with DecontX
    Yang, Shiyi
    Corbett, Sean E.
    Koga, Yusuke
    Wang, Zhe
    Johnson, W. Evan
    Yajima, Masanao
    Campbell, Joshua D.
    GENOME BIOLOGY, 2020, 21 (01)
  • [35] Toward universal cell embeddings: integrating single-cell RNA-seq datasets across species with SATURN
    Rosen, Yanay
    Brbic, Maria
    Roohani, Yusuf
    Swanson, Kyle
    Li, Ziang
    Leskovec, Jure
    NATURE METHODS, 2024, 21 (03) : 1492 - 1500
  • [36] Common mitochondrial deletions in RNA-Seq: evaluation of bulk, single-cell, and spatial transcriptomic datasets
    Audrey A. Omidsalar
    Carmel G. McCullough
    Lili Xu
    Stanley Boedijono
    Daniel Gerke
    Michelle G. Webb
    Zarko Manojlovic
    Adolfo Sequeira
    Mark F. Lew
    Marco Santorelli
    Geidy E. Serrano
    Thomas G. Beach
    Agenor Limon
    Marquis P. Vawter
    Brooke E. Hjelm
    Communications Biology, 7
  • [37] Common mitochondrial deletions in RNA-Seq: evaluation of bulk, single-cell, and spatial transcriptomic datasets
    Omidsalar, Audrey A.
    Mccullough, Carmel G.
    Xu, Lili
    Boedijono, Stanley
    Gerke, Daniel
    Webb, Michelle G.
    Manojlovic, Zarko
    Sequeira, Adolfo
    Lew, Mark F.
    Santorelli, Marco
    Serrano, Geidy E.
    Beach, Thomas G.
    Limon, Agenor
    Vawter, Marquis P.
    Hjelm, Brooke E.
    COMMUNICATIONS BIOLOGY, 2024, 7 (01)
  • [38] Molecular signature of multiple myeloma progression through single-cell RNA-seq
    Jang, Jin Sung
    CANCER RESEARCH, 2018, 78 (13)
  • [39] Single-cell RNA-seq: advances and future challenges
    Saliba, Antoine-Emmanuel
    Westermann, Alexander J.
    Gorski, Stanislaw A.
    Vogel, Joerg
    NUCLEIC ACIDS RESEARCH, 2014, 42 (14) : 8845 - 8860
  • [40] Guidelines for reporting single-cell RNA-seq experiments
    Fullgrabe, Anja
    George, Nancy
    Green, Matthew
    Nejad, Parisa
    Aronow, Bruce
    Fexova, Silvie Korena
    Fischer, Clay
    Freeberg, Mallory Ann
    Huerta, Laura
    Morrison, Norman
    Scheuermann, Richard H.
    Taylor, Deanne
    Vasilevsky, Nicole
    Clarke, Laura
    Gehlenborg, Nils
    Kent, Jim
    Marioni, John
    Teichmann, Sarah
    Brazma, Alvis
    Papatheodorou, Irene
    NATURE BIOTECHNOLOGY, 2020, 38 (12) : 1384 - 1386