Bgee in 2024: focus on curated single-cell RNA-seq datasets, and query tools

被引:1
|
作者
Bastian, Frederic B. [1 ,2 ]
Cammarata, Alessandro Brandulas [1 ,2 ]
Carsanaro, Sara [1 ,2 ]
Detering, Harald [1 ,2 ]
Huang, Wan-Ting [1 ,2 ]
Joye, Sagane [1 ,2 ]
Niknejad, Anne [1 ,2 ]
Nyamari, Marion [1 ,2 ]
de Farias, Tarcisio Mendes [1 ,2 ]
Moretti, Sebastien [1 ,2 ]
Tzivanopoulou, Marianna [1 ,2 ]
Wollbrett, Julien [1 ,2 ]
Robinson-Rechavi, Marc [1 ,2 ]
机构
[1] SIB Swiss Inst Bioinformat, Evolutionary Bioinformat, Batiment Amphipole, CH-1015 Lausanne, Switzerland
[2] Univ Lausanne, Dept Ecol & Evolut, Batiment Biophore, Lausanne, Switzerland
基金
瑞士国家科学基金会; 欧盟地平线“2020”;
关键词
EXPRESSION; RESOURCE; ATLAS;
D O I
10.1093/nar/gkae1118
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bgee (https://www.bgee.org/) is a database to retrieve and compare gene expression patterns in multiple animal species. Expression data are integrated and made comparable between species thanks to consistent data annotation and processing. In the past years, we have integrated single-cell RNA-sequencing expression data into Bgee through careful curation of public datasets in multiple species. We have fully integrated this new technology along with the wealth of other data existing in Bgee. As a result, Bgee can now provide one definitive answer all the way to the cell resolution about a gene's expression pattern, comparable between species. We have updated our programmatic access tools to adapt to these changes accordingly. We have introduced a new web interface, providing detailed access to our annotations and expression data. It enables users to retrieve data, e.g. for specific organs, cell types or developmental stages, and leverages ontology reasoning to build powerful queries. Finally, we have expanded our species count from 29 to 52, emphasizing fish species critical for vertebrate genome studies, species of agronomic and veterinary importance and nonhuman primates.
引用
收藏
页码:D878 / D885
页数:8
相关论文
共 50 条
  • [1] An interpretable framework for clustering single-cell RNA-Seq datasets
    Jesse M. Zhang
    Jue Fan
    H. Christina Fan
    David Rosenfeld
    David N. Tse
    BMC Bioinformatics, 19
  • [2] Single-cell RNA-seq clustering: datasets, models, and algorithms
    Peng, Lihong
    Tian, Xiongfei
    Tian, Geng
    Xu, Junlin
    Huang, Xin
    Weng, Yanbin
    Yang, Jialiang
    Zhou, Liqian
    RNA BIOLOGY, 2020, 17 (06) : 765 - 783
  • [3] Processing single-cell RNA-seq datasets using SingCellaR
    Wang, Guanlin
    Wen, Wei Xiong
    Mead, Adam J.
    Roy, Anindita
    Psaila, Bethan
    Thongjuea, Supat
    STAR PROTOCOLS, 2022, 3 (02):
  • [4] An interpretable framework for clustering single-cell RNA-Seq datasets
    Zhang, Jesse M.
    Fan, Jue
    Fan, Christina
    Rosenfeld, David
    Tse, David N.
    BMC BIOINFORMATICS, 2018, 19
  • [5] Integration of Single-Cell RNA-Seq Datasets: A Review of Computational Methods
    Ryu, Yeonjae
    Han, Geun Hee
    Jung, Eunsoo
    Hwang, Daehee
    MOLECULES AND CELLS, 2023, 46 (02) : 106 - 119
  • [6] Consequences and opportunities arising due to sparser single-cell RNA-seq datasets
    Gerard A. Bouland
    Ahmed Mahfouz
    Marcel J. T. Reinders
    Genome Biology, 24
  • [7] Evaluation of single-cell RNA-seq clustering algorithms on cancer tumor datasets
    Mahalanabis, Alaina
    Turinsky, Andrei L.
    Husic, Mia
    Christensen, Erik
    Luo, Ping
    Naidas, Alaine
    Brudno, Michael
    Pugh, Trevor
    Ramani, Arun K.
    Shooshtari, Parisa
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 6375 - 6387
  • [8] Evaluation of single-cell RNA-seq clustering algorithms on cancer tumor datasets
    Mahalanabis, Alaina
    Turinsky, Andrei L.
    Husić, Mia
    Christensen, Erik
    Luo, Ping
    Naidas, Alaine
    Brudno, Michael
    Pugh, Trevor
    Ramani, Arun K.
    Shooshtari, Parisa
    Computational and Structural Biotechnology Journal, 2022, 20 : 6375 - 6387
  • [9] Consequences and opportunities arising due to sparser single-cell RNA-seq datasets
    Bouland, Gerard A.
    Mahfouz, Ahmed
    Reinders, Marcel J. T.
    GENOME BIOLOGY, 2023, 24 (01)
  • [10] Correlation Imputation for Single-Cell RNA-seq
    Gan, Luqin
    Vinci, Giuseppe
    Allen, Genevera I.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (05) : 465 - 482