Bgee in 2024: focus on curated single-cell RNA-seq datasets, and query tools

被引:1
|
作者
Bastian, Frederic B. [1 ,2 ]
Cammarata, Alessandro Brandulas [1 ,2 ]
Carsanaro, Sara [1 ,2 ]
Detering, Harald [1 ,2 ]
Huang, Wan-Ting [1 ,2 ]
Joye, Sagane [1 ,2 ]
Niknejad, Anne [1 ,2 ]
Nyamari, Marion [1 ,2 ]
de Farias, Tarcisio Mendes [1 ,2 ]
Moretti, Sebastien [1 ,2 ]
Tzivanopoulou, Marianna [1 ,2 ]
Wollbrett, Julien [1 ,2 ]
Robinson-Rechavi, Marc [1 ,2 ]
机构
[1] SIB Swiss Inst Bioinformat, Evolutionary Bioinformat, Batiment Amphipole, CH-1015 Lausanne, Switzerland
[2] Univ Lausanne, Dept Ecol & Evolut, Batiment Biophore, Lausanne, Switzerland
基金
瑞士国家科学基金会; 欧盟地平线“2020”;
关键词
EXPRESSION; RESOURCE; ATLAS;
D O I
10.1093/nar/gkae1118
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bgee (https://www.bgee.org/) is a database to retrieve and compare gene expression patterns in multiple animal species. Expression data are integrated and made comparable between species thanks to consistent data annotation and processing. In the past years, we have integrated single-cell RNA-sequencing expression data into Bgee through careful curation of public datasets in multiple species. We have fully integrated this new technology along with the wealth of other data existing in Bgee. As a result, Bgee can now provide one definitive answer all the way to the cell resolution about a gene's expression pattern, comparable between species. We have updated our programmatic access tools to adapt to these changes accordingly. We have introduced a new web interface, providing detailed access to our annotations and expression data. It enables users to retrieve data, e.g. for specific organs, cell types or developmental stages, and leverages ontology reasoning to build powerful queries. Finally, we have expanded our species count from 29 to 52, emphasizing fish species critical for vertebrate genome studies, species of agronomic and veterinary importance and nonhuman primates.
引用
收藏
页码:D878 / D885
页数:8
相关论文
共 50 条
  • [31] Practical Compass of Single-Cell RNA-Seq Analysis
    Okada, Hiroyuki
    Chung, Ung-il
    Hojo, Hironori
    CURRENT OSTEOPOROSIS REPORTS, 2024, 22 (05) : 433 - 440
  • [32] Embracing the dropouts in single-cell RNA-seq analysis
    Peng Qiu
    Nature Communications, 11
  • [33] Guidelines for reporting single-cell RNA-seq experiments
    Anja Füllgrabe
    Nancy George
    Matthew Green
    Parisa Nejad
    Bruce Aronow
    Silvie Korena Fexova
    Clay Fischer
    Mallory Ann Freeberg
    Laura Huerta
    Norman Morrison
    Richard H. Scheuermann
    Deanne Taylor
    Nicole Vasilevsky
    Laura Clarke
    Nils Gehlenborg
    Jim Kent
    John Marioni
    Sarah Teichmann
    Alvis Brazma
    Irene Papatheodorou
    Nature Biotechnology, 2020, 38 : 1384 - 1386
  • [34] Single-cell RNA-Seq unveils tumor microenvironment
    Lee, Hae-Ock
    Park, Woong-Yang
    BMB REPORTS, 2017, 50 (06) : 283 - 284
  • [35] From single-cell RNA-seq to transcriptional regulation
    Gioele La Manno
    Nature Biotechnology, 2019, 37 : 1421 - 1422
  • [36] How deep is enough in single-cell RNA-seq?
    Aaron M Streets
    Yanyi Huang
    Nature Biotechnology, 2014, 32 : 1005 - 1006
  • [37] How deep is enough in single-cell RNA-seq?
    Streets, Aaron M.
    Huang, Yanyi
    NATURE BIOTECHNOLOGY, 2014, 32 (10) : 1005 - 1006
  • [38] Single-cell RNA-seq keeps cells alive
    Eleni Kotsiliti
    Nature Biotechnology, 2022, 40 : 1432 - 1432
  • [39] Comparison of transformations for single-cell RNA-seq data
    Constantin Ahlmann-Eltze
    Wolfgang Huber
    Nature Methods, 2023, 20 : 665 - 672
  • [40] Submodular sketches of single-cell RNA-seq measurements
    Yang, Wei
    Bilmes, Jeffrey
    Noble, William Stafford
    ACM-BCB 2020 - 11TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2020,