Additive engineering strategies for improved interfacial stability in lithium metal batteries

被引:2
|
作者
Ryu, Kun [1 ,2 ]
Lee, Kyungbin [1 ]
Lim, Jeonghoon [3 ]
Lee, Michael J. [1 ]
Kim, Keun-Hee [1 ]
Lee, Un Hwan [4 ]
Rinkel, Bernardine L. D. [3 ]
Kim, Kyungmo [1 ]
Kim, Soohyun [5 ]
Kim, Dayoung [5 ]
Shin, Dongsek [5 ]
McCloskey, Bryan [3 ]
Kang, Joonhee [4 ]
Lee, Seung Woo [1 ]
机构
[1] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[2] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[3] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[4] Pusan Natl Univ, Dept Nanoenergy Engn, Busan 46241, South Korea
[5] LG Energy Solut Ltd, LG Sci Pk, Seoul 07796, South Korea
基金
美国国家科学基金会;
关键词
ELECTROLYTE; CATHODE;
D O I
10.1039/d4ee02479f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrolyte engineering is crucial for advancing lithium (Li) metal batteries (LMBs). Currently, unstable electrode-electrolyte interfaces limit the stable cycling of LMBs. Here, we introduce an additive engineering approach aimed at strengthening these electrode-electrolyte interfaces by incorporating the ionic additive tetrabutylammonium tetrafluoroborate into a low-concentration tetrahydrofuran ether electrolyte. Our findings reveal that tetrafluoroborate anions minimize corrosion and Li inventory loss. In addition, bulky tetrabutylammonium cations adsorbed onto the anode surface enable uniform and compact Li electrodeposition. This fluorinating and dendrite-suppressing mechanism supports stable high-current and high-capacity operations. Without altering the electrolyte solvation structure, the functional additive forms a robust interface with enhanced charge transport kinetics, specifically a stable solid-electrolyte interphase and cathode-electrolyte interphase. The designed electrolyte demonstrates 150 cycles 82.4% capacity retention in full cells employing 4 mA h cm-2 high-nickel cathodes under practical testing conditions (N/P = 1.75, E/C = 5.1 g A h-1). Additive engineering in low-concentration ether electrolytes enhances the electrode-electrolyte interfacial stability, enabling the stable cycling of high-energy, cost-effective lithium metal batteries.
引用
收藏
页码:7772 / 7781
页数:10
相关论文
共 50 条
  • [41] An improved composite polymer electrolyte for lithium metal batteries
    Mastragostino, M
    Soavi, F
    Zanelli, A
    SOLID STATE IONICS V, 1999, 548 : 359 - 365
  • [42] Electrolyte-Additive-Driven Interfacial Engineering for High-Capacity Electrodes in Lithium-Ion Batteries: Promise and Challenges
    Kim, Koeun
    Ma, Hyunsoo
    Park, Sewon
    Choi, Nam-Soon
    ACS ENERGY LETTERS, 2020, 5 (05) : 1537 - 1553
  • [43] Electrolyte and Additive Engineering for Zn Anode Interfacial Regulation in Aqueous Zinc Batteries
    Xu, Shenqiu
    Huang, Jiawen
    Wang, Guanyao
    Dou, Yuhai
    Yuan, Ding
    Lin, Liangxu
    Qin, Kaifeng
    Wu, Kuan
    Liu, Hua Kun
    Dou, Shi-Xue
    Wu, Chao
    SMALL METHODS, 2024, 8 (06)
  • [44] Improved Performance of All-Solid-State Lithium Metal Batteries via Physical and Chemical Interfacial Control
    Kim, Jong Heon
    Go, Kwangmo
    Lee, Kyung Jin
    Kim, Hyun-Suk
    ADVANCED SCIENCE, 2022, 9 (02)
  • [45] Composite polymer electrolytes with improved lithium metal electrode interfacial properties - II. Application in rechargeable batteries
    Appetecchi, GB
    Croce, F
    Mastragostino, M
    Scrosati, B
    Soavi, F
    Zanelli, A
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (12) : 4133 - 4135
  • [46] Engineering Strategies for Suppressing the Shuttle Effect in Lithium–Sulfur Batteries
    Jiayi Li
    Li Gao
    Fengying Pan
    Cheng Gong
    Limeng Sun
    Hong Gao
    Jinqiang Zhang
    Yufei Zhao
    Guoxiu Wang
    Hao Liu
    Nano-Micro Letters, 2024, 16 (01) : 193 - 227
  • [47] Lithium Metal Stability in Batteries with Block Copolymer Electrolytes
    Hallinan, Daniel T.
    Mullin, Scott A.
    Stone, Gregory M.
    Balsara, Nitash P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (03) : A464 - A470
  • [48] Interfacial studies on the effects of patterned anodes for guided lithium deposition in lithium metal batteries
    Morey, Madison
    Loftus, John
    Cannon, Andrew
    Ryan, Emily
    JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (01):
  • [49] Interfacial engineering of lithium metal anodes: what is left to uncover?
    Oyakhire, Solomon T.
    Bent, Stacey F.
    ENERGY ADVANCES, 2024, 3 (01): : 108 - 122
  • [50] Enabling good interfacial stability by dual-salt composite electrolyte for long cycle lithium metal batteries
    Wang, Qiujun
    Zhang, Pin
    Zhu, Weiqi
    Li, Zhaojin
    Zhang, Di
    Wang, Huan
    Sun, Huilan
    Wang, Bo
    Chi, Shang-Sen
    JOURNAL OF POWER SOURCES, 2023, 564