Additive engineering strategies for improved interfacial stability in lithium metal batteries

被引:2
|
作者
Ryu, Kun [1 ,2 ]
Lee, Kyungbin [1 ]
Lim, Jeonghoon [3 ]
Lee, Michael J. [1 ]
Kim, Keun-Hee [1 ]
Lee, Un Hwan [4 ]
Rinkel, Bernardine L. D. [3 ]
Kim, Kyungmo [1 ]
Kim, Soohyun [5 ]
Kim, Dayoung [5 ]
Shin, Dongsek [5 ]
McCloskey, Bryan [3 ]
Kang, Joonhee [4 ]
Lee, Seung Woo [1 ]
机构
[1] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[2] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[3] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[4] Pusan Natl Univ, Dept Nanoenergy Engn, Busan 46241, South Korea
[5] LG Energy Solut Ltd, LG Sci Pk, Seoul 07796, South Korea
基金
美国国家科学基金会;
关键词
ELECTROLYTE; CATHODE;
D O I
10.1039/d4ee02479f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrolyte engineering is crucial for advancing lithium (Li) metal batteries (LMBs). Currently, unstable electrode-electrolyte interfaces limit the stable cycling of LMBs. Here, we introduce an additive engineering approach aimed at strengthening these electrode-electrolyte interfaces by incorporating the ionic additive tetrabutylammonium tetrafluoroborate into a low-concentration tetrahydrofuran ether electrolyte. Our findings reveal that tetrafluoroborate anions minimize corrosion and Li inventory loss. In addition, bulky tetrabutylammonium cations adsorbed onto the anode surface enable uniform and compact Li electrodeposition. This fluorinating and dendrite-suppressing mechanism supports stable high-current and high-capacity operations. Without altering the electrolyte solvation structure, the functional additive forms a robust interface with enhanced charge transport kinetics, specifically a stable solid-electrolyte interphase and cathode-electrolyte interphase. The designed electrolyte demonstrates 150 cycles 82.4% capacity retention in full cells employing 4 mA h cm-2 high-nickel cathodes under practical testing conditions (N/P = 1.75, E/C = 5.1 g A h-1). Additive engineering in low-concentration ether electrolytes enhances the electrode-electrolyte interfacial stability, enabling the stable cycling of high-energy, cost-effective lithium metal batteries.
引用
收藏
页码:7772 / 7781
页数:10
相关论文
共 50 条
  • [21] Improved Cycling Stability of Lithium Electrodes in Rechargeable Lithium Batteries
    Kang, Ik Su
    Lee, Yoon-Sung
    Kim, Dong-Won
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (01) : A53 - A57
  • [22] Dead Lithium in Lithium Metal Batteries: Formation, Characterization and Strategies
    Jiang, Yongming
    Ye, Fangmin
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (43)
  • [23] In Situ Gel Polymer Electrolyte with Inhibited Lithium Dendrite Growth and Enhanced Interfacial Stability for Lithium-Metal Batteries
    Wei, Junqiang
    Yue, Hongyun
    Shi, Zhenpu
    Li, Zhaoyang
    Li, Xiangnan
    Yin, Yanhong
    Yang, Shuting
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (27) : 32486 - 32494
  • [24] Rationally Designed Fluorinated Amide Additive Enables the Stable Operation of Lithium Metal Batteries by Regulating the Interfacial Chemistry
    Zhou, Pan
    Xia, Yingchun
    Hou, Wen-hui
    Yan, Shuaishuai
    Zhou, Hang-Yu
    Zhang, Weili
    Lu, Yang
    Wang, Peican
    Liu, Kai
    NANO LETTERS, 2022, 22 (14) : 5936 - 5943
  • [25] Multifunctional Acetamide Additive Combined with LiNO3 Co-Assists Low-Concentration Electrolyte Interfacial Stability for Lithium Metal Batteries
    Liu, Yongchao
    Wang, Jirui
    Rong, Shengge
    Zhao, Kun
    He, Kunpeng
    Cheng, Sheng
    Sun, Yi
    Xiang, Hongfa
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (46) : 53405 - 53416
  • [26] Interfacial Engineering with Liquid Metal for Si-Based Hybrid Electrodes in Lithium-Ion Batteries
    Hapuarachchi, Sashini N. S.
    Wasalathilake, Kimal C.
    Siriwardena, Dumindu P.
    Nerkar, Jawahar Y.
    Chen, Hao
    Zhang, Shanqing
    Liu, Yang
    Zheng, Jun-chao
    Golberg, Dmitri, V
    O'Mullane, Anthony P.
    Yan, Cheng
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (06): : 5147 - 5152
  • [27] A Perspective on interfacial engineering of lithium metal anodes and beyond
    Yan, Qizhang
    Whang, Grace
    Wei, Ziyang
    Ko, Shu-Ting
    Sautet, Philippe
    Tolbert, Sarah H.
    Dunn, Bruce S.
    Luo, Jian
    APPLIED PHYSICS LETTERS, 2020, 117 (08)
  • [28] Interfacial Engineering Using a Thiophene-based Electrolyte Additive for High-Voltage Lithium-Ion Batteries
    Shin, Kwongyo
    Moon, Hyeongyu
    Kang, Gumin
    Shin, Donggyun
    Han, Seonggon
    Hong, Seungbum
    Choi, Nam-Soon
    ENERGY & FUELS, 2025, 39 (09) : 4525 - 4539
  • [29] Coupling and stability of interfacial waves in liquid metal batteries
    Horstmann, G. M.
    Weber, N.
    Weier, T.
    JOURNAL OF FLUID MECHANICS, 2018, 845 : 1 - 35
  • [30] Interfacial Defect of Lithium Metal in Solid-State Batteries
    Yang, Menghao
    Mo, Yifei
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (39) : 21494 - 21501