Additive engineering strategies for improved interfacial stability in lithium metal batteries

被引:2
|
作者
Ryu, Kun [1 ,2 ]
Lee, Kyungbin [1 ]
Lim, Jeonghoon [3 ]
Lee, Michael J. [1 ]
Kim, Keun-Hee [1 ]
Lee, Un Hwan [4 ]
Rinkel, Bernardine L. D. [3 ]
Kim, Kyungmo [1 ]
Kim, Soohyun [5 ]
Kim, Dayoung [5 ]
Shin, Dongsek [5 ]
McCloskey, Bryan [3 ]
Kang, Joonhee [4 ]
Lee, Seung Woo [1 ]
机构
[1] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[2] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[3] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[4] Pusan Natl Univ, Dept Nanoenergy Engn, Busan 46241, South Korea
[5] LG Energy Solut Ltd, LG Sci Pk, Seoul 07796, South Korea
基金
美国国家科学基金会;
关键词
ELECTROLYTE; CATHODE;
D O I
10.1039/d4ee02479f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrolyte engineering is crucial for advancing lithium (Li) metal batteries (LMBs). Currently, unstable electrode-electrolyte interfaces limit the stable cycling of LMBs. Here, we introduce an additive engineering approach aimed at strengthening these electrode-electrolyte interfaces by incorporating the ionic additive tetrabutylammonium tetrafluoroborate into a low-concentration tetrahydrofuran ether electrolyte. Our findings reveal that tetrafluoroborate anions minimize corrosion and Li inventory loss. In addition, bulky tetrabutylammonium cations adsorbed onto the anode surface enable uniform and compact Li electrodeposition. This fluorinating and dendrite-suppressing mechanism supports stable high-current and high-capacity operations. Without altering the electrolyte solvation structure, the functional additive forms a robust interface with enhanced charge transport kinetics, specifically a stable solid-electrolyte interphase and cathode-electrolyte interphase. The designed electrolyte demonstrates 150 cycles 82.4% capacity retention in full cells employing 4 mA h cm-2 high-nickel cathodes under practical testing conditions (N/P = 1.75, E/C = 5.1 g A h-1). Additive engineering in low-concentration ether electrolytes enhances the electrode-electrolyte interfacial stability, enabling the stable cycling of high-energy, cost-effective lithium metal batteries.
引用
收藏
页码:7772 / 7781
页数:10
相关论文
共 50 条
  • [31] In situ Gel Electrolytes for the Interfacial Regulation of Lithium Metal Batteries
    Chen, Zhihua
    Hu, Jingwei
    Ji, Shuaijing
    Zhang, Weixin
    Han, Qigao
    Tang, Shun
    Cao, Yuancheng
    CHEMPHYSCHEM, 2024, 25 (06)
  • [32] RbF as a Dendrite-Inhibiting Additive in Lithium Metal Batteries
    Li, Shaopeng
    Fang, Shan
    Dou, Hui
    Zhang, Xiaogang
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (23) : 20804 - 20811
  • [33] Electrolyte additive enabled low temperature lithium metal batteries
    Zhang, Yiwen
    Luo, Jianmin
    Wang, Chuanlong
    Hu, Xiaofei
    Matios, Edward
    Li, Weiyang
    MATERIALS CHEMISTRY FRONTIERS, 2022, 6 (11) : 1405 - 1413
  • [34] Double-edged effects of electrolyte additive on interfacial stability in fast-charging lithium-ion batteries
    Lee, Hyuntae
    Doh, Junyoung
    Lee, Soyeon
    Sung, Dohyun
    Kim, Hang
    Chae, Sujong
    Lee, Hongkyung
    CHEMICAL COMMUNICATIONS, 2024, 60 (89) : 13044 - 13047
  • [35] Lithium metal anode with lithium borate layer for enhanced cycling stability of lithium metal batteries
    Kang, Hyunseo
    Song, Minkyu
    Yang, MinHo
    Lee, Jae-won
    JOURNAL OF POWER SOURCES, 2021, 485
  • [36] Improving interfacial stability of ultrahigh-voltage lithium metal batteries with single-crystal Ni-rich cathode via a multifunctional additive strategy
    Zhang, Zhi
    Liu, Fangyan
    Huang, Zeyu
    Yi, Maoyi
    Fan, Xinming
    Bai, Maohui
    Hong, Bo
    Zhang, Zhian
    Li, Jie
    Lai, Yanqing
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 608 : 1471 - 1480
  • [37] Molecular engineering of fluoroether electrolytes for lithium metal batteries
    Chen, Yuxi
    Lee, Elizabeth M. Y.
    Gil, Phwey S.
    Ma, Peiyuan
    Amanchukwu, Chibueze, V
    de Pablo, Juan J.
    MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2023, 8 (02): : 195 - 206
  • [38] Solid polymer electrolytes with dual salts enhance lithium-metal interfacial stability for long cycle performance of lithium batteries
    Liu, Dong
    Liu, Xiaofeng
    Zheng, Lifei
    Chen, Fei
    Guo, Changxiang
    POLYMER, 2024, 313
  • [39] Interfacial engineering for high-performance garnet-based lithium metal batteries: A perspective on lithiophilicity and lithiophobicity
    Srivastava, Pavitra
    Bazri, Behrouz
    Maurya, Dheeraj Kumar
    Huang, Wen-Tse
    Liao, Yu -Kai
    Huang, Jheng-Yi
    Wei, Da-Hua
    Hu, Shu-Fen
    Liu, Ru-Shi
    ENERGYCHEM, 2024, 6 (03)
  • [40] Interfacial engineering for stabilizing polymer electrolytes with 4V cathodes in lithium metal batteries at elevated temperature
    Li, Zeyuan
    Li, Aijun
    Zhang, Hanrui
    Lin, Ruoqian
    Jin, Tianwei
    Cheng, Qian
    Xiao, Xianghui
    Lee, Wah-Keat
    Ge, Mingyuan
    Zhang, Haijun
    Zangiabadi, Amirali
    Waluyo, Iradwikanari
    Hunt, Adrian
    Zhai, Haowei
    Borovilas, James Joseph
    Wang, Peiyu
    Yang, Xiao-Qing
    Chuan, Xiuyun
    Yang, Yuan
    NANO ENERGY, 2020, 72