Improved Performance of All-Solid-State Lithium Metal Batteries via Physical and Chemical Interfacial Control

被引:17
|
作者
Kim, Jong Heon [1 ]
Go, Kwangmo [2 ]
Lee, Kyung Jin [2 ]
Kim, Hyun-Suk [1 ]
机构
[1] Chungnam Natl Univ, Dept Mat Sci & Engn, Coll Engn, 99 Daehak Ro, Daejeon 34134, South Korea
[2] Chungnam Natl Univ, Dept Chem Engn & Appl Chem, Coll Engn, 99 Daehak Ro, Daejeon 34134, South Korea
基金
新加坡国家研究基金会;
关键词
all-solid-state lithium metal batteries; Li films; Li6 25La3Zr2Al0 25O12 (LLZO); plasma treatment; PVDF-HFP; solid composite electrolytes; thermal evaporation; COMPOSITE POLYMER ELECTROLYTE; HIGH-ENERGY; IONIC-CONDUCTIVITY; LI; LI7LA3ZR2O12; TEMPERATURE; ANODES;
D O I
10.1002/advs.202103433
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium metal batteries (LMBs) show several limitations, such as high flammability and Li dendrite growth. All-solid-state LMBs (ASSLMBs) are promising alternatives to conventional liquid electrolyte (LE)-based LMBs. However, it is challenging to prepare a solid electrolyte with both high ionic conductivity and low electrode-electrolyte interfacial resistance. In this study, to overcome these problems, a solid composite electrolyte (SCE) consisting of Li6.25La3Zr2Al0.25O12 and polyvinylidene fluoride-co-hexafluoropropylene is used, which has attracted considerable attention in recent years as a solid-state electrolyte. To operate LMBs without an LE, optimization of the electrode-solid-electrolyte interface is crucial. To achieve this, physical and chemical treatments are performed, i.e., direct growth of each layer by drop casting and thermal evaporation, and plasma treatment before the Li evaporation process, respectively. The optimized ASSLMB (amorphous V2O5-x (1 mu m)/SCE (30 mu m)/Li film (10 mu m)) has a high discharge capacity of 136.13 mAh g(-1) (at 50 degrees C and 5 C), which is 90% of that of an LMB with an LE. It also shows good cycling performance (>99%) over 1000 cycles. Thus, the proposed design minimizes the electrode-solid-electrolyte interfacial resistance, and is expected to be suitable for integration with existing commercial processes.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Interfacial challenges in all-solid-state lithium batteries
    Huang, Yonglin
    Shao, Bowen
    Han, Fudong
    CURRENT OPINION IN ELECTROCHEMISTRY, 2022, 33
  • [2] In Situ Analysis of Interfacial Morphological and Chemical Evolution in All-Solid-State Lithium-Metal Batteries
    Zhang, Xu-Sheng
    Wan, Jing
    Shen, Zhen-Zhen
    Lang, Shuang-Yan
    Xin, Sen
    Wen, Rui
    Guo, Yu-Guo
    Wan, Li-Jun
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (38)
  • [3] The interfacial behaviours of all-solid-state lithium ion batteries
    Bai, Lixiong
    Xue, Wendong
    Li, Yan
    Liu, Xiaoguang
    Li, Yong
    Sun, Jialin
    CERAMICS INTERNATIONAL, 2018, 44 (07) : 7319 - 7328
  • [4] Interfacial Reactions in Inorganic All-Solid-State Lithium Batteries
    Zheng, Chao
    Li, Lujie
    Wang, Kai
    Wang, Cheng
    Zhang, Jun
    Xia, Yang
    Huang, Hui
    Liang, Chu
    Gan, Yongping
    He, Xinping
    Tao, Xinyong
    Zhang, Wenkui
    BATTERIES & SUPERCAPS, 2021, 4 (01) : 8 - 38
  • [5] Enhanced Bulk and Interfacial Conductivity in All-Solid-State Lithium Metal Batteries via Garnet Surface Phosphorylation
    Yang, Lin
    Mu, Yongbiao
    Zou, Lingfeng
    Li, Chao
    Wang, Xin
    Feng, Yitian
    Chu, Youqi
    Huang, Chaozhu
    Zhang, Qing
    Zeng, Lin
    NANO LETTERS, 2025, 25 (08) : 3093 - 3102
  • [6] Benchmarking the performance of all-solid-state lithium batteries
    Randau, Simon
    Weber, Dominik A.
    Koetz, Olaf
    Koerver, Raimund
    Braun, Philipp
    Weber, Andre
    Ivers-Tiffee, Ellen
    Adermann, Torben
    Kulisch, Joern
    Zeier, Wolfgang G.
    Richter, Felix H.
    Janek, Juergen
    NATURE ENERGY, 2020, 5 (03) : 259 - 270
  • [7] Benchmarking the performance of all-solid-state lithium batteries
    Simon Randau
    Dominik A. Weber
    Olaf Kötz
    Raimund Koerver
    Philipp Braun
    André Weber
    Ellen Ivers-Tiffée
    Torben Adermann
    Jörn Kulisch
    Wolfgang G. Zeier
    Felix H. Richter
    Jürgen Janek
    Nature Energy, 2020, 5 : 259 - 270
  • [8] A novel composite solid electrolyte based on chemical bonding and physical reinforcing for all-solid-state lithium metal batteries
    Yuan, Songdong
    Luo, Yi
    Wang, Xiaobo
    Yao, Chuang
    Xia, Kai
    Xiao, Jintao
    Fang, Xinguang
    Jiang, Guodong
    Xiong, Jian
    Fan, Mingxia
    JOURNAL OF ENERGY STORAGE, 2024, 90
  • [9] Preparation, design and interfacial modification of sulfide solid electrolytes for all-solid-state lithium metal batteries
    Li, Jianwei
    Li, Yuanyuan
    Wang, Yuxiao
    Wang, Xiaojun
    Wang, Peng
    Ci, Lijie
    Liu, Zhiming
    ENERGY STORAGE MATERIALS, 2025, 74
  • [10] Interfacial challenges and progress for inorganic all-solid-state lithium batteries
    Xu, R. C.
    Xia, X. H.
    Zhang, S. Z.
    Xie, D.
    Wang, X. L.
    Tu, J. P.
    ELECTROCHIMICA ACTA, 2018, 284 : 177 - 187