Improved Performance of All-Solid-State Lithium Metal Batteries via Physical and Chemical Interfacial Control

被引:17
|
作者
Kim, Jong Heon [1 ]
Go, Kwangmo [2 ]
Lee, Kyung Jin [2 ]
Kim, Hyun-Suk [1 ]
机构
[1] Chungnam Natl Univ, Dept Mat Sci & Engn, Coll Engn, 99 Daehak Ro, Daejeon 34134, South Korea
[2] Chungnam Natl Univ, Dept Chem Engn & Appl Chem, Coll Engn, 99 Daehak Ro, Daejeon 34134, South Korea
基金
新加坡国家研究基金会;
关键词
all-solid-state lithium metal batteries; Li films; Li6 25La3Zr2Al0 25O12 (LLZO); plasma treatment; PVDF-HFP; solid composite electrolytes; thermal evaporation; COMPOSITE POLYMER ELECTROLYTE; HIGH-ENERGY; IONIC-CONDUCTIVITY; LI; LI7LA3ZR2O12; TEMPERATURE; ANODES;
D O I
10.1002/advs.202103433
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium metal batteries (LMBs) show several limitations, such as high flammability and Li dendrite growth. All-solid-state LMBs (ASSLMBs) are promising alternatives to conventional liquid electrolyte (LE)-based LMBs. However, it is challenging to prepare a solid electrolyte with both high ionic conductivity and low electrode-electrolyte interfacial resistance. In this study, to overcome these problems, a solid composite electrolyte (SCE) consisting of Li6.25La3Zr2Al0.25O12 and polyvinylidene fluoride-co-hexafluoropropylene is used, which has attracted considerable attention in recent years as a solid-state electrolyte. To operate LMBs without an LE, optimization of the electrode-solid-electrolyte interface is crucial. To achieve this, physical and chemical treatments are performed, i.e., direct growth of each layer by drop casting and thermal evaporation, and plasma treatment before the Li evaporation process, respectively. The optimized ASSLMB (amorphous V2O5-x (1 mu m)/SCE (30 mu m)/Li film (10 mu m)) has a high discharge capacity of 136.13 mAh g(-1) (at 50 degrees C and 5 C), which is 90% of that of an LMB with an LE. It also shows good cycling performance (>99%) over 1000 cycles. Thus, the proposed design minimizes the electrode-solid-electrolyte interfacial resistance, and is expected to be suitable for integration with existing commercial processes.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] High Performance Lithium Metal Anode with a Nanolayer of LiZn Alloy for All-Solid-State Batteries
    Delaporte, Nicolas
    Perea, Alexis
    Collin-Martin, Steve
    Leonard, Mireille
    Matton, Julie
    Gariepy, Vincent
    Demers, Hendrix
    Clement, Daniel
    Rivard, Etienne
    Vijh, Ashok
    BATTERIES & SUPERCAPS, 2022, 5 (10)
  • [22] Improved interfacial electronic contacts powering high sulfur utilization in all-solid-state lithium–sulfur batteries
    Hou, Li-Peng
    Yuan, Hong
    Zhao, Chen-Zi
    Xu, Lei
    Zhu, Gao-Long
    Nan, Hao-Xiong
    Cheng, Xin-Bing
    Liu, Quan-Bing
    He, Chuan-Xin
    Huang, Jia-Qi
    Zhang, Qiang
    Zhang, Qiang (zhang-qiang@mails.tsinghua.edu.cn), 1600, Elsevier B.V., Netherlands (25): : 436 - 442
  • [23] Lithium anode interlayer design for all-solid-state lithium-metal batteries
    Zeyi Wang
    Jiale Xia
    Xiao Ji
    Yijie Liu
    Jiaxun Zhang
    Xinzi He
    Weiran Zhang
    Hongli Wan
    Chunsheng Wang
    Nature Energy, 2024, 9 : 251 - 262
  • [24] Lithium anode interlayer design for all-solid-state lithium-metal batteries
    Wang, Zeyi
    Xia, Jiale
    Ji, Xiao
    Liu, Yijie
    Zhang, Jiaxun
    He, Xinzi
    Zhang, Weiran
    Wan, Hongli
    Wang, Chunsheng
    NATURE ENERGY, 2024, 9 (03) : 251 - 262
  • [25] Ameliorating the interfacial issues of all-solid-state lithium metal batteries by constructing polymer/inorganic composite electrolyte
    Wang, Su
    Sun, Qifang
    Peng, Wenxiu
    Ma, Yue
    Zhou, Ying
    Song, Dawei
    Zhang, Hongzhou
    Shi, Xixi
    Li, Chunliang
    Zhang, Lianqi
    JOURNAL OF ENERGY CHEMISTRY, 2021, 58 : 85 - 93
  • [26] Ameliorating the interfacial issues of all-solid-state lithium metal batteries by constructing polymer/inorganic composite electrolyte
    Su Wang
    Qifang Sun
    Wenxiu Peng
    Yue Ma
    Ying Zhou
    Dawei Song
    Hongzhou Zhang
    Xixi Shi
    Chunliang Li
    Lianqi Zhang
    Journal of Energy Chemistry, 2021, 58 (07) : 85 - 93
  • [27] Enhancing interfacial stability in lithium orthosilicate/polymer blended novel hybrid solid-state electrolytes for all-solid-state lithium metal batteries
    Nelson, Akhil
    Sultana, Irin
    O'Dell, Luke A.
    Rahman, Md Mokhlesur
    Chen, Ying
    JOURNAL OF POWER SOURCES, 2024, 622
  • [28] Interfacial redox behaviors of sulfide electrolytes in fast-charging all-solid-state lithium metal batteries
    Zhu, Gao-Long
    Zhao, Chen-Zi
    Yuan, Hong
    Zhao, Bo-Chen
    Hou, Li-Peng
    Cheng, Xin-Bing
    Nan, Hao-Xiong
    Lu, Yang
    Zhang, Jian
    Huang, Jia-Qi
    Liu, Quan-Bing
    He, Chuan-Xin
    Zhang, Qiang
    ENERGY STORAGE MATERIALS, 2020, 31 (31) : 267 - 273
  • [29] Insights Into the Interfacial Degradation of High-Voltage All-Solid-State Lithium Batteries
    Li, Jiawen
    Ji, Yuchen
    Song, Haoran
    Chen, Shiming
    Ding, Shouxiang
    Zhang, Bingkai
    Yang, Luyi
    Song, Yongli
    Pan, Feng
    NANO-MICRO LETTERS, 2022, 14 (01)
  • [30] Insights Into the Interfacial Degradation of High-Voltage All-Solid-State Lithium Batteries
    Jiawen Li
    Yuchen Ji
    Haoran Song
    Shiming Chen
    Shouxiang Ding
    Bingkai Zhang
    Luyi Yang
    Yongli Song
    Feng Pan
    Nano-Micro Letters, 2022, 14