Concentration of hitting times in Erdős-Rényi graphs

被引:2
|
作者
Ottolini, Andrea [1 ]
Steinerberger, Stefan [1 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
Erd & odblac; s-R & eacute; nyi graphs; hitting time; random walk;
D O I
10.1002/jgt.23119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider Erd & odblac;s-R & eacute;nyi graphs G(n,p) $G(n,p)$ for 0<p<1 $0\lt p\lt 1$ fixed and n ->infinity $n\to \infty $ and study the expected number of steps, Hwv ${H}_{wv}$, that a random walk started in w $w$ needs to first arrive in v $v$. A natural guess is that an Erd & odblac;s-R & eacute;nyi random graph is so homogeneous that it does not really distinguish between vertices and Hwv=(1+o(1))n ${H}_{wv}=(1+o(1))n$. L & ouml;we-Terveer established a CLT for the Mean Starting Hitting Time suggesting Hwv=n +/- O(n) ${H}_{wv}=n\pm {\mathscr{O}}(\sqrt{n})$. We prove the existence of a strong concentration phenomenon: Hwv ${H}_{wv}$ is given, up to a very small error of size less than or similar to(logn)3/2/n $\lesssim {(\mathrm{log}n)}<^>{3\unicode{x02215}2}\unicode{x02215}\sqrt{n}$, by an explicit simple formula involving only the total number of edges divided by E divided by $| E| $, the degree deg(v) $\text{deg}(v)$ and the distance d(v,w) $d(v,w)$.
引用
收藏
页码:245 / 262
页数:18
相关论文
共 50 条
  • [41] Localized Phase for the Erdős–Rényi Graph
    Johannes Alt
    Raphael Ducatez
    Antti Knowles
    Communications in Mathematical Physics, 2024, 405
  • [42] Graph matching beyond perfectly-overlapping Erdős–Rényi random graphs
    Yaofang Hu
    Wanjie Wang
    Yi Yu
    Statistics and Computing, 2022, 32
  • [43] Edge ideals of Erdős–Rényi  random graphs: linear resolution, unmixedness and regularity
    Arindam Banerjee
    D. Yogeshwaran
    Journal of Algebraic Combinatorics, 2023, 58 : 1125 - 1154
  • [44] Phase Transition in Inhomogenous Erdős-Rényi Random Graphs via Tree Counting
    Ghurumuruhan Ganesan
    Sankhya A, 2018, 80 (1): : 1 - 27
  • [45] Spectral Graph Matching and Regularized Quadratic Relaxations IIErdős-Rényi Graphs and Universality
    Zhou Fan
    Cheng Mao
    Yihong Wu
    Jiaming Xu
    Foundations of Computational Mathematics, 2023, 23 : 1567 - 1617
  • [46] -混合随机变量的泛函型Erds-Rényi大数定律
    刘京军
    数学年刊A辑(中文版), 2000, (01) : 13 - 18
  • [47] 关于部分和增量的Erds-Rényi大数定律的收敛速度
    闻继威
    杭州大学学报(自然科学版), 1995, (02) : 126 - 131
  • [48] Minimum Winfree loop determines self-sustained oscillations in excitable Erdös-Rényi random networks
    Yu Qian
    Xiaohua Cui
    Zhigang Zheng
    Scientific Reports, 7
  • [49] On the intersections of the Besicovitch sets and the Erdös–Rényi sets
    Mengjie Zhang
    Li Peng
    Monatshefte für Mathematik, 2019, 189 : 179 - 189
  • [50] A statistical analysis method for probability distributions in Erdös-Rényi random networks with preferential cutting-rewiring operation
    Qian, Yu
    Cao, Jiahui
    Han, Jing
    Zhang, Siyi
    Chen, Wentao
    Lei, Zhao
    Cui, Xiaohua
    Zheng, Zhigang
    FRONTIERS IN NETWORK PHYSIOLOGY, 2024, 4