Concentration of hitting times in Erdős-Rényi graphs

被引:2
|
作者
Ottolini, Andrea [1 ]
Steinerberger, Stefan [1 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
Erd & odblac; s-R & eacute; nyi graphs; hitting time; random walk;
D O I
10.1002/jgt.23119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider Erd & odblac;s-R & eacute;nyi graphs G(n,p) $G(n,p)$ for 0<p<1 $0\lt p\lt 1$ fixed and n ->infinity $n\to \infty $ and study the expected number of steps, Hwv ${H}_{wv}$, that a random walk started in w $w$ needs to first arrive in v $v$. A natural guess is that an Erd & odblac;s-R & eacute;nyi random graph is so homogeneous that it does not really distinguish between vertices and Hwv=(1+o(1))n ${H}_{wv}=(1+o(1))n$. L & ouml;we-Terveer established a CLT for the Mean Starting Hitting Time suggesting Hwv=n +/- O(n) ${H}_{wv}=n\pm {\mathscr{O}}(\sqrt{n})$. We prove the existence of a strong concentration phenomenon: Hwv ${H}_{wv}$ is given, up to a very small error of size less than or similar to(logn)3/2/n $\lesssim {(\mathrm{log}n)}<^>{3\unicode{x02215}2}\unicode{x02215}\sqrt{n}$, by an explicit simple formula involving only the total number of edges divided by E divided by $| E| $, the degree deg(v) $\text{deg}(v)$ and the distance d(v,w) $d(v,w)$.
引用
收藏
页码:245 / 262
页数:18
相关论文
共 50 条
  • [21] Antiferromagnetic Potts Model on the Erdős-Rényi Random Graph
    Pierluigi Contucci
    Sander Dommers
    Cristian Giardinà
    Shannon Starr
    Communications in Mathematical Physics, 2013, 323 : 517 - 554
  • [22] A polynomial-time approximation scheme for the maximal overlap of two independent Erdős-Rényi graphs
    Ding, Jian
    Du, Hang
    Gong, Shuyang
    RANDOM STRUCTURES & ALGORITHMS, 2024, 65 (01) : 220 - 257
  • [23] Delocalization Transition for Critical Erdős–Rényi Graphs
    Johannes Alt
    Raphael Ducatez
    Antti Knowles
    Communications in Mathematical Physics, 2021, 388 : 507 - 579
  • [24] Exponential inequalities for the number of subgraphs in the Erd?s-R?nyi random graph
    Bystrov, Alexander A.
    Volodko, Nadezhda V.
    STATISTICS & PROBABILITY LETTERS, 2023, 195
  • [25] Eigenvalues Outside the Bulk of Inhomogeneous Erdős-Rényi Random Graphs ( vol 181 , pg 1746 , 2020)
    Chakrabarty, Arijit
    Chakraborty, Sukrit
    Hazra, Rajat Subhra
    JOURNAL OF STATISTICAL PHYSICS, 2024, 191 (04)
  • [26] Fluctuations of extreme eigenvalues of sparse Erdős–Rényi graphs
    Yukun He
    Antti Knowles
    Probability Theory and Related Fields, 2021, 180 : 985 - 1056
  • [27] On Large Deviation Properties of Erdös–Rényi Random Graphs
    Andreas Engel
    Rémi Monasson
    Alexander K. Hartmann
    Journal of Statistical Physics, 2004, 117 : 387 - 426
  • [28] Seeded graph matching for correlated Erdo″s-Rényi graphs
    1600, Microtome Publishing (15):
  • [29] 异质Erd?s-Rényi随机超网络上的演化博弈
    王浩羽
    刘兴文
    吴琼
    西南民族大学学报(自然科学版), 2023, 49 (04) : 463 - 472
  • [30] Efficient estimation in tensor Curie-Weiss and Erdős-Rényi Ising models
    Mukherjee, Somabha
    Son, Jaesung
    Ghosh, Swarnadip
    Mukherjee, Sourav
    ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (01): : 2405 - 2449