Concentration of hitting times in Erdős-Rényi graphs

被引:2
|
作者
Ottolini, Andrea [1 ]
Steinerberger, Stefan [1 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
Erd & odblac; s-R & eacute; nyi graphs; hitting time; random walk;
D O I
10.1002/jgt.23119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider Erd & odblac;s-R & eacute;nyi graphs G(n,p) $G(n,p)$ for 0<p<1 $0\lt p\lt 1$ fixed and n ->infinity $n\to \infty $ and study the expected number of steps, Hwv ${H}_{wv}$, that a random walk started in w $w$ needs to first arrive in v $v$. A natural guess is that an Erd & odblac;s-R & eacute;nyi random graph is so homogeneous that it does not really distinguish between vertices and Hwv=(1+o(1))n ${H}_{wv}=(1+o(1))n$. L & ouml;we-Terveer established a CLT for the Mean Starting Hitting Time suggesting Hwv=n +/- O(n) ${H}_{wv}=n\pm {\mathscr{O}}(\sqrt{n})$. We prove the existence of a strong concentration phenomenon: Hwv ${H}_{wv}$ is given, up to a very small error of size less than or similar to(logn)3/2/n $\lesssim {(\mathrm{log}n)}<^>{3\unicode{x02215}2}\unicode{x02215}\sqrt{n}$, by an explicit simple formula involving only the total number of edges divided by E divided by $| E| $, the degree deg(v) $\text{deg}(v)$ and the distance d(v,w) $d(v,w)$.
引用
收藏
页码:245 / 262
页数:18
相关论文
共 50 条
  • [31] Probabilistic Procedures for SIR and SIS Epidemic Dynamics on Erdös-Rényi Contact Networks
    Rocha, J. Leonel
    Carvalho, Sonia
    Coimbra, Beatriz
    APPLIEDMATH, 2023, 3 (04): : 828 - 850
  • [32] Generalized Random Sequential Adsorption on Erdős–Rényi Random Graphs
    Souvik Dhara
    Johan S. H. van Leeuwaarden
    Debankur Mukherjee
    Journal of Statistical Physics, 2016, 164 : 1217 - 1232
  • [33] Upper tail of the spectral radius of sparse Erdös–Rényi graphs
    Anirban Basak
    Probability Theory and Related Fields, 2023, 187 : 885 - 947
  • [34] Eigenvalues Outside the Bulk of Inhomogeneous Erdős–Rényi Random Graphs
    Arijit Chakrabarty
    Sukrit Chakraborty
    Rajat Subhra Hazra
    Journal of Statistical Physics, 2020, 181 : 1746 - 1780
  • [35] The Large Deviation Principle for Inhomogeneous Erdős–Rényi Random Graphs
    Maarten Markering
    Journal of Theoretical Probability, 2023, 36 : 711 - 727
  • [36] Moderate deviations of triangle counts in sparse Erdős-Rényi random graphs G(n, m) and G(n, p)
    Alvarado, Jose D.
    de Oliveira, Leonardo Goncalves
    Griffiths, Simon
    PROBABILITY THEORY AND RELATED FIELDS, 2025, : 779 - 851
  • [37] Partial Recovery of ErdÅ's-Rényi Graph Alignment via k-Core Alignment
    Cullina D.
    Kiyavash N.
    Mittal P.
    Poor H.V.
    Performance Evaluation Review, 2020, 48 (01): : 99 - 100
  • [38] Fluctuations of the Magnetization for Ising Models on Dense Erdős–Rényi Random Graphs
    Zakhar Kabluchko
    Matthias Löwe
    Kristina Schubert
    Journal of Statistical Physics, 2019, 177 : 78 - 94
  • [39] Exploring the limits of the law of mass action in the mean field description of epidemics on Erdös-Rényi networks
    Munoz, Francisco J.
    Meacci, Luca
    Nuno, Juan Carlos
    Primicerio, Mario
    APPLIED MATHEMATICS AND COMPUTATION, 2025, 485
  • [40] 平稳独立增量过程的泛函Erds-Rényi大数定律
    姜峰
    湖北大学学报(自然科学版), 2000, (01) : 22 - 24