Edge ideals of Erdős–Rényi  random graphs: linear resolution, unmixedness and regularity

被引:0
|
作者
Arindam Banerjee
D. Yogeshwaran
机构
[1] Indian Institute of Technology Kharagpur,Department of Mathematics
[2] Indian Statistical Institute,Theoretical Statistics and Mathematics Unit
来源
Journal of Algebraic Combinatorics | 2023年 / 58卷
关键词
Edge ideals; Erdős–Rényirandom graphs; Chordality; Linear resolution; Unmixedness; Regularity; Projective dimension; Depth; 05C80; 05E40; 13F55;
D O I
暂无
中图分类号
学科分类号
摘要
We study the homological algebra of edge ideals of Erdős–Rényi  random graphs. These random graphs are generated by deleting edges of a complete graph on n vertices independently of each other with probability 1-p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-p$$\end{document}. We focus on some aspects of these random edge ideals—linear resolution, unmixedness and algebraic invariants like the Castelnuovo–Mumford regularity, projective dimension and depth. We first show a double phase transition for existence of linear presentation and resolution and determine the critical windows as well. As a consequence, we obtain that except for a very specific choice of parameters (i.e., n,p:=p(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n,p:= p(n)$$\end{document}), with high probability, a random edge ideal has linear presentation if and only if it has linear resolution. This shows certain conjectures hold true for large random graphs with high probability even though the conjectures were shown to fail for determinstic graphs. Next, we study asymptotic behaviour of some algebraic invariants—the Castelnuovo–Mumford regularity, projective dimension and depth—of such random edge ideals in the sparse regime (i.e., p=λn,λ∈(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p = \frac{\lambda }{n}, \lambda \in (0,\infty )$$\end{document}). These invariants are studied using local weak convergence (or Benjamini-Schramm convergence) and relating them to invariants on Galton–Watson trees. We also show that when p→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \rightarrow 0$$\end{document} or p→1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \rightarrow 1$$\end{document} fast enough, then with high probability the edge ideals are unmixed and for most other choices of p, these ideals are not unmixed with high probability. This is further progress towards the conjecture that random monomial ideals are unlikely to have Cohen–Macaulay property (De Loera et al. in Proc Am Math Soc 147(8):3239–3257, 2019; J Algebra 519:440–473, 2019) in the setting when the number of variables goes to infinity but the degree is fixed.
引用
收藏
页码:1125 / 1154
页数:29
相关论文
共 50 条
  • [1] Edge ideals of Erdős-Rényi random graphs: linear resolution, unmixedness and regularity
    Banerjee, Arindam
    Yogeshwaran, D.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2023, 58 (4) : 1125 - 1154
  • [2] Edge ideals of Erds-Renyi random graphs: linear resolution, unmixedness and regularity
    Banerjee, Arindam
    Yogeshwaran, D.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2023, 58 (04) : 1125 - 1154
  • [3] Generalized Random Sequential Adsorption on Erdős–Rényi Random Graphs
    Souvik Dhara
    Johan S. H. van Leeuwaarden
    Debankur Mukherjee
    Journal of Statistical Physics, 2016, 164 : 1217 - 1232
  • [4] On Large Deviation Properties of Erdös–Rényi Random Graphs
    Andreas Engel
    Rémi Monasson
    Alexander K. Hartmann
    Journal of Statistical Physics, 2004, 117 : 387 - 426
  • [5] Eigenvalues Outside the Bulk of Inhomogeneous Erdős–Rényi Random Graphs
    Arijit Chakrabarty
    Sukrit Chakraborty
    Rajat Subhra Hazra
    Journal of Statistical Physics, 2020, 181 : 1746 - 1780
  • [6] The Large Deviation Principle for Inhomogeneous Erdős–Rényi Random Graphs
    Maarten Markering
    Journal of Theoretical Probability, 2023, 36 : 711 - 727
  • [7] Fluctuations of the Magnetization for Ising Models on Dense Erdős–Rényi Random Graphs
    Zakhar Kabluchko
    Matthias Löwe
    Kristina Schubert
    Journal of Statistical Physics, 2019, 177 : 78 - 94
  • [8] Delocalization Transition for Critical Erdős–Rényi Graphs
    Johannes Alt
    Raphael Ducatez
    Antti Knowles
    Communications in Mathematical Physics, 2021, 388 : 507 - 579
  • [9] Multifractal phase in the weighted adjacency matrices of random Erdös-Rényi graphs
    Cugliandolo, Leticia F.
    Schehr, Gregory
    Tarzia, Marco
    Venturelli, Davide
    PHYSICAL REVIEW B, 2024, 110 (17)
  • [10] Correction: Eigenvalues Outside the Bulk of Inhomogeneous Erdős-Rényi Random Graphs
    Arijit Chakrabarty
    Sukrit Chakraborty
    Rajat Subhra Hazra
    Journal of Statistical Physics, 191