Visually quantifying single-qubit quantum memory

被引:1
|
作者
Chang, Wan-Guan [1 ,2 ]
Ju, Chia-Yi [3 ,4 ,5 ]
Chen, Guang-Yin [5 ,6 ,7 ]
Chen, Yueh-Nan [1 ,2 ,5 ]
Ku, Huan-Yu [8 ]
机构
[1] Natl Cheng Kung Univ, Dept Phys, Tainan 701, Taiwan
[2] Natl Cheng Kung Univ, Ctr Quantum Frontiers Res & Technol QFort, Tainan 701, Taiwan
[3] Natl Sun Yat Sen Univ, Dept Phys, Kaohsiung 80424, Taiwan
[4] Natl Sun Yat Sen Univ, Ctr Theoret & Computat Phys, Kaohsiung 80424, Taiwan
[5] Natl Ctr Theoret Sci, Phys Div, Taipei 106319, Taiwan
[6] Natl Chung Hsing Univ, Dept Phys, Taichung 402, Taiwan
[7] Natl Ctr Theoret Sci, Phys Div, Taipei 10617, Taiwan
[8] Natl Taiwan Normal Univ, Dept Phys, Taipei 11677, Taiwan
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 02期
关键词
!text type='PYTHON']PYTHON[!/text] FRAMEWORK; ENTANGLEMENT; TELEPORTATION; SEPARABILITY; CRYPTOGRAPHY; DYNAMICS; CHANNELS; STATES; QUTIP; GATES;
D O I
10.1103/PhysRevResearch.6.023035
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To store quantum information, quantum memory plays a central intermediate ingredient in a network. The minimal criterion for a reliable quantum memory is the maintenance of the entangled state, which can be described by the non-entanglement-breaking (non-EB) channel. In this work, we show that all single-qubit quantum memory can be quantified without trusting input state generation. In other words, we provide a semi-device-independent approach to quantify all single-qubit quantum memory. More specifically, we apply the concept of the two-qubit quantum steering ellipsoids to a single-qubit quantum channel and define the channel ellipsoids. An ellipsoid can be constructed by visualizing finite output states within the Bloch sphere. Since the Choi-Jamio & lstrok;kowski state of a channel can all be reconstructed from geometric data of the channel ellipsoid, a reliable quantum memory can be detected. Finally, we visually quantify the single-qubit quantum memory by observing the volume of the channel ellipsoid.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Geometric single-qubit gates for an electron spin in a quantum dot
    Malinovsky, Vladimir S.
    Rudin, Sergey
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2012, 112 (24) : 3744 - 3749
  • [42] Quantum Sensing with a Single-Qubit Pseudo-Hermitian System
    Chu, Yaoming
    Liu, Yu
    Liu, Haibin
    Cai, Jianming
    PHYSICAL REVIEW LETTERS, 2020, 124 (02)
  • [43] Shorter quantum circuits via single-qubit gate approximation
    Kliuchnikov, Vadym
    Lauter, Kristin
    Minko, Romy
    Paetznick, Adam
    Petit, Christophe
    QUANTUM, 2023, 7
  • [44] Robust control of single-qubit gates at the quantum speed limit
    Cao, Xi
    Cui, Jiangyu
    Yung, Man Hong
    Wu, Re-Bing
    PHYSICAL REVIEW A, 2024, 110 (02)
  • [45] Quantum circuits for single-qubit measurements corresponding to platonic solids
    Decker, T
    Janzing, D
    Beth, T
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2004, 2 (03) : 353 - 377
  • [46] Entanglement-secured single-qubit quantum secret sharing
    Scherpelz, P.
    Resch, R.
    Berryrieser, D.
    Lynn, T. W.
    PHYSICAL REVIEW A, 2011, 84 (03):
  • [47] Hierarchical quantum communication of a single-qubit state with multiple users
    Liu, Miao
    Maihemuti, Nueraminaimu
    Peng, Jiayin
    Aisan, Yimamujiang
    Tang, Jiangang
    LASER PHYSICS, 2025, 35 (04)
  • [48] Amplitude damping for single-qubit system with single-qubit mixed-state environment
    Jung, Eylee
    Hwang, Mi-Ra
    Ju, You Hwan
    Park, D. K.
    Kim, Hungsoo
    Kim, Min-Soo
    Son, Jin-Woo
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (04)
  • [49] Classical ensembles of single-qubit quantum variational circuits for classification
    McFarthing, Shane
    Pillay, Anban
    Sinayskiy, Ilya
    Petruccione, Francesco
    QUANTUM MACHINE INTELLIGENCE, 2024, 6 (02)
  • [50] Hybrid bidirectional quantum communication protocol of two single-qubit states under noisy channels with memory
    Manoj Kumar Mandal
    Binayak S. Choudhury
    Soumen Samanta
    Quantum Information Processing, 22