Classical ensembles of single-qubit quantum variational circuits for classification

被引:0
|
作者
McFarthing, Shane [1 ,2 ]
Pillay, Anban [1 ,3 ]
Sinayskiy, Ilya [2 ,4 ]
Petruccione, Francesco [2 ,5 ,6 ]
机构
[1] Univ KwaZulu Natal Westville Campus, Sch Math Stat & Comp Sci, ZA-4001 Durban, South Africa
[2] Natl Inst Theoret & Computat Sci NITheCS, ZA-7600 Stellenbosch, South Africa
[3] Ctr Artificial Intelligence Res CAIR, Cape Town, South Africa
[4] Univ KwaZulu Natal Westville Campus, Sch Chem & Phys, ZA-4001 Durban, South Africa
[5] Stellenbosch Univ, Sch Data Sci & Computat Thinking, ZA-7600 Cape Town, South Africa
[6] Stellenbosch Univ, Dept Phys, ZA-7600 Cape Town, South Africa
关键词
Quantum computing; Machine learning; Quantum classifiers; Classical ensembles;
D O I
10.1007/s42484-024-00211-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The quantum asymptotically universal multi-feature (QAUM) encoding architecture was recently introduced and showed improved expressivity and performance in classifying pulsar stars. The circuit uses generalized trainable layers of parameterized single-qubit rotation gates and single-qubit feature encoding gates. Although the improvement in classification accuracy is promising, the single-qubit nature of this architecture, combined with the circuit depth required for accuracy, limits its applications on NISQ devices due to their low coherence times. This work reports on the design, implementation, and evaluation of ensembles of single-qubit QAUM classifiers using classical bagging and boosting techniques. We demonstrate an improvement in validation accuracy for pulsar star classification. We find that this improvement is not dataset specific as we observe consistent improvements for the MNIST Digits and Wisconsin Cancer datasets. We also observe that the boosting ensemble achieves an acceptable level of accuracy with only a small amount of training, while the bagging ensemble achieves higher overall accuracy with ample training time. This shows that classical ensembles of single-qubit circuits present a new approach for certain classification problems.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Practical Approximation of Single-Qubit Unitaries by Single-Qubit Quantum Clifford and T Circuits
    Kliuchnikov, Vadym
    Maslov, Dmitri
    Mosca, Michele
    IEEE TRANSACTIONS ON COMPUTERS, 2016, 65 (01) : 161 - 172
  • [2] Resource-Optimal Single-Qubit Quantum Circuits
    Bocharov, Alex
    Svore, Krysta M.
    PHYSICAL REVIEW LETTERS, 2012, 109 (19)
  • [3] Quantum-Classical Variational Approaches with Single-Qubit Operation on Near-Term Quantum Processors
    Miki, T.
    Tsukayama, D.
    Okita, R.
    Shimada, M.
    Shirakashi, J.
    2022 IEEE 22ND INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (NANO), 2022, : 303 - 306
  • [4] Shorter quantum circuits via single-qubit gate approximation
    Kliuchnikov, Vadym
    Lauter, Kristin
    Minko, Romy
    Paetznick, Adam
    Petit, Christophe
    QUANTUM, 2023, 7
  • [5] Quantum circuits for single-qubit measurements corresponding to platonic solids
    Decker, T
    Janzing, D
    Beth, T
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2004, 2 (03) : 353 - 377
  • [6] Sequential optimal selections of single-qubit gates in parameterized quantum circuits
    Wada, Kaito
    Raymond, Rudy
    Sato, Yuki
    Watanabe, Hiroshi C.
    QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (03):
  • [7] Learning classical readout quantum PUFs based on single-qubit gates
    Pirnay, Niklas
    Pappa, Anna
    Seifert, Jean-Pierre
    QUANTUM MACHINE INTELLIGENCE, 2022, 4 (02)
  • [8] Learning classical readout quantum PUFs based on single-qubit gates
    Niklas Pirnay
    Anna Pappa
    Jean-Pierre Seifert
    Quantum Machine Intelligence, 2022, 4
  • [9] Optimizing Parameterized Quantum Circuits With Free-Axis Single-Qubit Gates
    Watanabe H.C.
    Raymond R.
    Ohnishi Y.-Y.
    Kaminishi E.
    Sugawara M.
    IEEE Transactions on Quantum Engineering, 2023, 4
  • [10] Mitigation of microwave crosstalk with parameterized single-qubit gate in superconducting quantum circuits
    Yang, Z. H.
    Wang, Ruixia
    Wang, Z. T.
    Zhao, Peng
    Huang, Kaixuan
    Xu, Kai
    Tian, Ye
    Yu, H. F.
    Zhao, S. P.
    APPLIED PHYSICS LETTERS, 2024, 124 (21)