Visually quantifying single-qubit quantum memory

被引:1
|
作者
Chang, Wan-Guan [1 ,2 ]
Ju, Chia-Yi [3 ,4 ,5 ]
Chen, Guang-Yin [5 ,6 ,7 ]
Chen, Yueh-Nan [1 ,2 ,5 ]
Ku, Huan-Yu [8 ]
机构
[1] Natl Cheng Kung Univ, Dept Phys, Tainan 701, Taiwan
[2] Natl Cheng Kung Univ, Ctr Quantum Frontiers Res & Technol QFort, Tainan 701, Taiwan
[3] Natl Sun Yat Sen Univ, Dept Phys, Kaohsiung 80424, Taiwan
[4] Natl Sun Yat Sen Univ, Ctr Theoret & Computat Phys, Kaohsiung 80424, Taiwan
[5] Natl Ctr Theoret Sci, Phys Div, Taipei 106319, Taiwan
[6] Natl Chung Hsing Univ, Dept Phys, Taichung 402, Taiwan
[7] Natl Ctr Theoret Sci, Phys Div, Taipei 10617, Taiwan
[8] Natl Taiwan Normal Univ, Dept Phys, Taipei 11677, Taiwan
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 02期
关键词
!text type='PYTHON']PYTHON[!/text] FRAMEWORK; ENTANGLEMENT; TELEPORTATION; SEPARABILITY; CRYPTOGRAPHY; DYNAMICS; CHANNELS; STATES; QUTIP; GATES;
D O I
10.1103/PhysRevResearch.6.023035
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To store quantum information, quantum memory plays a central intermediate ingredient in a network. The minimal criterion for a reliable quantum memory is the maintenance of the entangled state, which can be described by the non-entanglement-breaking (non-EB) channel. In this work, we show that all single-qubit quantum memory can be quantified without trusting input state generation. In other words, we provide a semi-device-independent approach to quantify all single-qubit quantum memory. More specifically, we apply the concept of the two-qubit quantum steering ellipsoids to a single-qubit quantum channel and define the channel ellipsoids. An ellipsoid can be constructed by visualizing finite output states within the Bloch sphere. Since the Choi-Jamio & lstrok;kowski state of a channel can all be reconstructed from geometric data of the channel ellipsoid, a reliable quantum memory can be detected. Finally, we visually quantify the single-qubit quantum memory by observing the volume of the channel ellipsoid.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Resource-Optimal Single-Qubit Quantum Circuits
    Bocharov, Alex
    Svore, Krysta M.
    PHYSICAL REVIEW LETTERS, 2012, 109 (19)
  • [22] Single-qubit gate teleportation provides a quantum advantage
    Caha, Libor
    Coiteux-Roy, Xavier
    Koenig, Robert
    QUANTUM, 2024, 8
  • [23] Arbitrary single-qubit transformations on a quantum frequency processor
    Lu, Hsuan-Hao
    Simmerman, Emma M.
    Lougovski, Pavel
    Weiner, Andrew M.
    Lukens, Joseph M.
    2020 IEEE PHOTONICS CONFERENCE (IPC), 2020,
  • [24] Signatures of quantum behavior in single-qubit weak measurements
    Ruskov, Rusko
    Korotkov, Alexander N.
    Mizel, Ari
    PHYSICAL REVIEW LETTERS, 2006, 96 (20)
  • [25] Quantum signal transmission through a single-qubit chain
    Y. S. Greenberg
    C. Merrigan
    A. Tayebi
    V. Zelevinsky
    The European Physical Journal B, 2013, 86
  • [26] Learning quantum phases via single-qubit disentanglement
    An, Zheng
    Cao, Chenfeng
    Xu, Cheng-Qian
    Zhou, D. L.
    QUANTUM, 2024, 8
  • [27] Learning quantum Hamiltonians from single-qubit measurements
    Che, Liangyu
    Wei, Chao
    Huang, Yulei
    Zhao, Dafa
    Xue, Shunzhong
    Nie, Xinfang
    Li, Jun
    Lu, Dawei
    Xin, Tao
    PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [28] Universal single-qubit quantum controller-observers
    Lloyd, S
    Landahl, AJ
    Slotine, JJE
    2003 INTERNATIONAL CONFERENCE PHYSICS AND CONTROL, VOLS 1-4, PROCEEDINGS: VOL 1: PHYSICS AND CONTROL: GENERAL PROBLEMS AND APPLICATIONS; VOL 2: CONTROL OF OSCILLATIONS AND CHAOS; VOL 3: CONTROL OF MICROWORLD PROCESSES. NANO- AND FEMTOTECHNOLOGIES; VOL 4: NONLINEAR DYNAMICS AND CONTROL, 2003, : 829 - 833
  • [29] Experimental replication of single-qubit quantum phase gates
    Micuda, M.
    Starek, R.
    Straka, I.
    Mikova, M.
    Sedlak, M.
    Jezek, M.
    Fiurasek, J.
    PHYSICAL REVIEW A, 2016, 93 (05)
  • [30] Single-qubit thermometry
    Jevtic, Sania
    Newman, David
    Rudolph, Terry
    Stace, T. M.
    PHYSICAL REVIEW A, 2015, 91 (01):