Visually quantifying single-qubit quantum memory

被引:1
|
作者
Chang, Wan-Guan [1 ,2 ]
Ju, Chia-Yi [3 ,4 ,5 ]
Chen, Guang-Yin [5 ,6 ,7 ]
Chen, Yueh-Nan [1 ,2 ,5 ]
Ku, Huan-Yu [8 ]
机构
[1] Natl Cheng Kung Univ, Dept Phys, Tainan 701, Taiwan
[2] Natl Cheng Kung Univ, Ctr Quantum Frontiers Res & Technol QFort, Tainan 701, Taiwan
[3] Natl Sun Yat Sen Univ, Dept Phys, Kaohsiung 80424, Taiwan
[4] Natl Sun Yat Sen Univ, Ctr Theoret & Computat Phys, Kaohsiung 80424, Taiwan
[5] Natl Ctr Theoret Sci, Phys Div, Taipei 106319, Taiwan
[6] Natl Chung Hsing Univ, Dept Phys, Taichung 402, Taiwan
[7] Natl Ctr Theoret Sci, Phys Div, Taipei 10617, Taiwan
[8] Natl Taiwan Normal Univ, Dept Phys, Taipei 11677, Taiwan
来源
PHYSICAL REVIEW RESEARCH | 2024年 / 6卷 / 02期
关键词
!text type='PYTHON']PYTHON[!/text] FRAMEWORK; ENTANGLEMENT; TELEPORTATION; SEPARABILITY; CRYPTOGRAPHY; DYNAMICS; CHANNELS; STATES; QUTIP; GATES;
D O I
10.1103/PhysRevResearch.6.023035
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To store quantum information, quantum memory plays a central intermediate ingredient in a network. The minimal criterion for a reliable quantum memory is the maintenance of the entangled state, which can be described by the non-entanglement-breaking (non-EB) channel. In this work, we show that all single-qubit quantum memory can be quantified without trusting input state generation. In other words, we provide a semi-device-independent approach to quantify all single-qubit quantum memory. More specifically, we apply the concept of the two-qubit quantum steering ellipsoids to a single-qubit quantum channel and define the channel ellipsoids. An ellipsoid can be constructed by visualizing finite output states within the Bloch sphere. Since the Choi-Jamio & lstrok;kowski state of a channel can all be reconstructed from geometric data of the channel ellipsoid, a reliable quantum memory can be detected. Finally, we visually quantify the single-qubit quantum memory by observing the volume of the channel ellipsoid.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Single-Qubit Gates Matter for Optimising Quantum Circuit Depth in Qubit Mapping
    Li, Sanjiang
    Ky Dan Nguyen
    Clare, Zachary
    Feng, Yuan
    2023 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN, ICCAD, 2023,
  • [32] Signatures of Open and Noisy Quantum Systems in Single-Qubit Quantum Annealing
    Morrell, Zachary
    Vuffray, Marc
    Lokhov, Andrey Y.
    Bartschi, Andreas
    Albash, Tameem
    Coffrin, Carleton
    PHYSICAL REVIEW APPLIED, 2023, 19 (03)
  • [33] Author Correction: Single-qubit quantum memory exceeding ten-minute coherence time
    Ye Wang
    Mark Um
    Junhua Zhang
    Shuoming An
    Ming Lyu
    Jing-Ning Zhang
    L.-M. Duan
    Dahyun Yum
    Kihwan Kim
    Nature Photonics, 2018, 12 : 185 - 185
  • [34] Quantum Simulation of Single-Qubit Thermometry Using Linear Optics
    Mancino, Luca
    Sbroscia, Marco
    Gianani, Ilaria
    Roccia, Emanuele
    Barbieri, Marco
    PHYSICAL REVIEW LETTERS, 2017, 118 (13)
  • [35] Dynamics of dispersive single-qubit readout in circuit quantum electrodynamics
    Bianchetti, R.
    Filipp, S.
    Baur, M.
    Fink, J. M.
    Goeppl, M.
    Leek, P. J.
    Steffen, L.
    Blais, A.
    Wallraff, A.
    PHYSICAL REVIEW A, 2009, 80 (04):
  • [36] Role of single-qubit decoherence time in adiabatic quantum computation
    Amin, M. H. S.
    Truncik, C. J. S.
    Averin, D. V.
    PHYSICAL REVIEW A, 2009, 80 (02)
  • [37] Recycling of a quantum field and optimal states for single-qubit rotations
    Vuglar, Shanon
    Gea-Banacloche, Julio
    PHYSICAL REVIEW A, 2024, 109 (02)
  • [38] Power and limitations of single-qubit native quantum neural networks
    Yu, Zhan
    Yao, Hongshun
    Li, Mujin
    Wang, Xin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [39] Segmented composite design of robust single-qubit quantum gates
    Kaplan, Ido
    Erew, Muhammad
    Piasetzky, Yonatan
    Goldstein, Moshe
    Oz, Yaron
    Suchowski, Haim
    PHYSICAL REVIEW A, 2023, 108 (04)
  • [40] Predicted ultrafast single-qubit operations in semiconductor quantum dots
    Pryor, C. E.
    Flatte, M. E.
    APPLIED PHYSICS LETTERS, 2006, 88 (23)